[1]
M. Brust, C.J. Kiely, Some recent advances in nanostructure, preparation from gold and silver particles: a short topical review, Colloid Surface A. 202 (2002) 175-186.
DOI: 10.1016/s0927-7757(01)01087-1
Google Scholar
[2]
M. Kowshik, S. Ashtaputre, S. Kharrazi, W. Vogel, J. Urban, S.K. Kulkarani, K.M. Paknikar, Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3, Nanotechnology 14 (2003) 95-100.
DOI: 10.1088/0957-4484/14/1/321
Google Scholar
[3]
K. Kalishwaralal, E. Banumathi, S. Ram Kumar Pandian, V. Deepak, J. Muniyandi, S.H. Eom, Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells , Colloid Surface B. 73 (2009) 51-57.
DOI: 10.1016/j.colsurfb.2009.04.025
Google Scholar
[4]
A. Bankar, B. Joshi, A.R. Kumar, S. Zinjarde, Banana peel extract mediated synthesis of gold nanoparticles, Colloid Surface B. 80 (2010) 45-50.
DOI: 10.1016/j.colsurfb.2010.05.029
Google Scholar
[5]
B.H. Dong, P.H. Juan, Metal nanoparticles on natural cellulose fibers: Electrostatic assembly and In situ synthesis, ACS Appl. Mater. Inter. 1 (2009) 797-803.
DOI: 10.1021/am800225j
Google Scholar
[6]
O.V. Salata, Applications of nanoparticles in biology and medicine, J. Nanobiotechnol. 2 (2004) 1-6.
Google Scholar
[7]
P. Mohanpuria, N.K. Rana, S.K. Yadav, Bio-synthesis of nanoparticles technological concepts and future applications, J. Nanopart. Res. 10 (2008) 507-5017.
DOI: 10.1007/s11051-007-9275-x
Google Scholar
[8]
V. Kumar, S.K. Yadav, Plant-mediated synthesis of silver and gold nanoparticles and their applications, J. Chem. Technol. Biot. 84 (2009) 151-157.
Google Scholar
[9]
K. Kalishwaralal, V. Deepak, S. Ram Kumar Pandian, S. Gurunathan, Biological synthesis of gold nanocubes from Bacillus licheniformis , Bioresource Technol, 100 (2009) 5356-5358.
DOI: 10.1016/j.biortech.2009.05.051
Google Scholar
[10]
M. L. Dos Santos, G.C. Magalhaes, Utilization of cashew nut shell liquid from Anacardium Occidentale as starting material for organic synthesis: a novel route to lasiodiplodin from cardols , J. Brazil Chem. Soc. 10 (1999) 13-20.
DOI: 10.1590/s0103-50531999000100003
Google Scholar
[11]
J.D. Mitchell, S.A. Mori, The cashew and its relatives. (Anacardium: Anacardiaceae), Mem. New York Bot. Gard. 42 (1987) 1-76.
Google Scholar
[12]
J.H.P. Tyman, The chemistry of non-isoprenoid phenolic lipids, in: Atta-ur-Rahan (Ed. ), Studies in natural products chemistry, Elsevier Science Publisher, Amsterdam, 1991, p.313.
Google Scholar
[13]
P. Velmurugan, M. Cho, S.M. Lee, J.H. Park, S. Bae, B.T. Oh, Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver, Carbohyd. Polym. 106 (2014) 319-325.
DOI: 10.1016/j.carbpol.2014.02.021
Google Scholar
[14]
J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, M. Suparna, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater. 4 (2008) 707-716.
DOI: 10.1016/j.actbio.2007.11.006
Google Scholar
[15]
G. Jayakumarai, C. Gokulpriya, R. Sudhapriya, G. Sharmila, C. Muthukumaran, Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract, Appl. Nanosci. 2015, DOI 10. 1007/s13204-015-0402-1.
DOI: 10.1007/s13204-015-0402-1
Google Scholar
[16]
M.A. Al-Mamun, K. Yoshihumi, M. Manickavachagam, Simple new synthesis of copper nanoparticles in water/acetonitrile mixed solvent and their characterization, Mater. Lett. 63 (2009) 2007-(2009).
DOI: 10.1016/j.matlet.2009.06.037
Google Scholar
[17]
M. Bicer, I. Sisman, Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution, Powder Technol. 198 (2010) 279-284.
DOI: 10.1016/j.powtec.2009.11.022
Google Scholar
[18]
P.K. Khanna, S. Gaikwad, P.V. Adhyapak, N. Singh, R. Marimuthu, Synthesis and characterization of copper nanoparticles, Mater. Lett. 61 (2007) 4711-4714.
DOI: 10.1016/j.matlet.2007.03.014
Google Scholar
[19]
M. Sathishkumar, K. Sneha, I.S. Kwak, J. Mao, S.J. Tripathy, Y.S. Yun, Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract, J. Hazard. Mater. 171 (2009) 400-404.
DOI: 10.1016/j.jhazmat.2009.06.014
Google Scholar
[20]
J.Y.N. Philip, J.D.C. Francisco, E.S. Dey, J. Buchweishaija, L.L. Mkayula, L. Ye, Isolation of anacardic acid from natural cashew nut shell liquid (CNSL) using supercritical carbon dioxide, Agric. Food Chem. 56 (2008) 9350-9354.
DOI: 10.1021/jf801532a
Google Scholar
[21]
X. Song, S. Sun, W. Zhang, Z. Yin, A method for the synthesis of spherical copper nanoparticles in the organic phase , J. Colloid Interface Sci. 273 (2004) 463-469.
DOI: 10.1016/j.jcis.2004.01.019
Google Scholar
[22]
S.Q. Qiu, J.X. Dong, G.X. Chen, Tribological properties of CeF, nanoparticles as additives in lubricating oils, Wear. 230 (1999) 35-38.
DOI: 10.1016/s0043-1648(99)00084-8
Google Scholar
[23]
R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, K. Kaveri, S. Kannan, Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells, Process Biochem. 47 (2012) 2405-2410.
DOI: 10.1016/j.procbio.2012.09.025
Google Scholar
[24]
L. Kvitek, A. Panacek, J. Soukupova, M. Kolar, R. Vecerova, R. Prucek, Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles, J. Phys. Chem. 122 (2008) 5825-5834.
DOI: 10.1371/journal.pone.0103675
Google Scholar
[25]
S.V. Otari, R.M. Patil, N.H. Nadaf, S.J. Ghosh, S.H. Pawar, Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp , Mater. Lett. 72 (2012) 92-94.
DOI: 10.1016/j.matlet.2011.12.109
Google Scholar
[26]
S.V. Otari, R.M. Patil, S.J. Ghosh, S.H. Pawar, Green phytosynthesis of silver nanoparticles using aqueous extract of Manilkara zapota (L. ) seeds and its inhibitory action against Candida species, Mater. Lett. 72 (2014) 367-369.
DOI: 10.1016/j.matlet.2013.11.066
Google Scholar
[27]
F. Okafor, A. Janen, T. Kukhtareva, V. Edwards, M. Curley, Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity, Int. J. Environ. Res. Public Health. 10 (2013) 5221-5238.
DOI: 10.3390/ijerph10105221
Google Scholar