Green Crystallization and Characterization of Copper Oxide (CuO) Nanoparticles Using Anacardium occidentale Shell Liquid and their Biomedical Applications

Article Preview

Abstract:

For the first time, we describe the production of nanocrystalline CuO particles using cashew nut shell liquid (CNSL). The effects of CSNL dosage, reaction duration, and concentrations on copper reduction and nanoparticle formation were studied. The resulting nanoparticles were characterized using TEM, XRD and FTIR analysis. The syntheses of nano-sized CuO NPs were confirmed via TEM and XRD and show the presence of well-dispersed CuO NPs ranging from 15 to 20 nm. The results confirm that CuO nanocrystals have high antibacterial efficacy and hence have great potential in the preparation of drugs against bacteria.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-173

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Brust, C.J. Kiely, Some recent advances in nanostructure, preparation from gold and silver particles: a short topical review, Colloid Surface A. 202 (2002) 175-186.

DOI: 10.1016/s0927-7757(01)01087-1

Google Scholar

[2] M. Kowshik, S. Ashtaputre, S. Kharrazi, W. Vogel, J. Urban, S.K. Kulkarani, K.M. Paknikar, Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3, Nanotechnology 14 (2003) 95-100.

DOI: 10.1088/0957-4484/14/1/321

Google Scholar

[3] K. Kalishwaralal, E. Banumathi, S. Ram Kumar Pandian, V. Deepak, J. Muniyandi, S.H. Eom, Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells , Colloid Surface B. 73 (2009) 51-57.

DOI: 10.1016/j.colsurfb.2009.04.025

Google Scholar

[4] A. Bankar, B. Joshi, A.R. Kumar, S. Zinjarde, Banana peel extract mediated synthesis of gold nanoparticles, Colloid Surface B. 80 (2010) 45-50.

DOI: 10.1016/j.colsurfb.2010.05.029

Google Scholar

[5] B.H. Dong, P.H. Juan, Metal nanoparticles on natural cellulose fibers: Electrostatic assembly and In situ synthesis, ACS Appl. Mater. Inter. 1 (2009) 797-803.

DOI: 10.1021/am800225j

Google Scholar

[6] O.V. Salata, Applications of nanoparticles in biology and medicine, J. Nanobiotechnol. 2 (2004) 1-6.

Google Scholar

[7] P. Mohanpuria, N.K. Rana, S.K. Yadav, Bio-synthesis of nanoparticles technological concepts and future applications, J. Nanopart. Res. 10 (2008) 507-5017.

DOI: 10.1007/s11051-007-9275-x

Google Scholar

[8] V. Kumar, S.K. Yadav, Plant-mediated synthesis of silver and gold nanoparticles and their applications, J. Chem. Technol. Biot. 84 (2009) 151-157.

Google Scholar

[9] K. Kalishwaralal, V. Deepak, S. Ram Kumar Pandian, S. Gurunathan, Biological synthesis of gold nanocubes from Bacillus licheniformis , Bioresource Technol, 100 (2009) 5356-5358.

DOI: 10.1016/j.biortech.2009.05.051

Google Scholar

[10] M. L. Dos Santos, G.C. Magalhaes, Utilization of cashew nut shell liquid from Anacardium Occidentale as starting material for organic synthesis: a novel route to lasiodiplodin from cardols , J. Brazil Chem. Soc. 10 (1999) 13-20.

DOI: 10.1590/s0103-50531999000100003

Google Scholar

[11] J.D. Mitchell, S.A. Mori, The cashew and its relatives. (Anacardium: Anacardiaceae), Mem. New York Bot. Gard. 42 (1987) 1-76.

Google Scholar

[12] J.H.P. Tyman, The chemistry of non-isoprenoid phenolic lipids, in: Atta-ur-Rahan (Ed. ), Studies in natural products chemistry, Elsevier Science Publisher, Amsterdam, 1991, p.313.

Google Scholar

[13] P. Velmurugan, M. Cho, S.M. Lee, J.H. Park, S. Bae, B.T. Oh, Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver, Carbohyd. Polym. 106 (2014) 319-325.

DOI: 10.1016/j.carbpol.2014.02.021

Google Scholar

[14] J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, M. Suparna, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater. 4 (2008) 707-716.

DOI: 10.1016/j.actbio.2007.11.006

Google Scholar

[15] G. Jayakumarai, C. Gokulpriya, R. Sudhapriya, G. Sharmila, C. Muthukumaran, Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract, Appl. Nanosci. 2015, DOI 10. 1007/s13204-015-0402-1.

DOI: 10.1007/s13204-015-0402-1

Google Scholar

[16] M.A. Al-Mamun, K. Yoshihumi, M. Manickavachagam, Simple new synthesis of copper nanoparticles in water/acetonitrile mixed solvent and their characterization, Mater. Lett. 63 (2009) 2007-(2009).

DOI: 10.1016/j.matlet.2009.06.037

Google Scholar

[17] M. Bicer, I. Sisman, Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution, Powder Technol. 198 (2010) 279-284.

DOI: 10.1016/j.powtec.2009.11.022

Google Scholar

[18] P.K. Khanna, S. Gaikwad, P.V. Adhyapak, N. Singh, R. Marimuthu, Synthesis and characterization of copper nanoparticles, Mater. Lett. 61 (2007) 4711-4714.

DOI: 10.1016/j.matlet.2007.03.014

Google Scholar

[19] M. Sathishkumar, K. Sneha, I.S. Kwak, J. Mao, S.J. Tripathy, Y.S. Yun, Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract, J. Hazard. Mater. 171 (2009) 400-404.

DOI: 10.1016/j.jhazmat.2009.06.014

Google Scholar

[20] J.Y.N. Philip, J.D.C. Francisco, E.S. Dey, J. Buchweishaija, L.L. Mkayula, L. Ye, Isolation of anacardic acid from natural cashew nut shell liquid (CNSL) using supercritical carbon dioxide, Agric. Food Chem. 56 (2008) 9350-9354.

DOI: 10.1021/jf801532a

Google Scholar

[21] X. Song, S. Sun, W. Zhang, Z. Yin, A method for the synthesis of spherical copper nanoparticles in the organic phase , J. Colloid Interface Sci. 273 (2004) 463-469.

DOI: 10.1016/j.jcis.2004.01.019

Google Scholar

[22] S.Q. Qiu, J.X. Dong, G.X. Chen, Tribological properties of CeF, nanoparticles as additives in lubricating oils, Wear. 230 (1999) 35-38.

DOI: 10.1016/s0043-1648(99)00084-8

Google Scholar

[23] R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, K. Kaveri, S. Kannan, Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells, Process Biochem. 47 (2012) 2405-2410.

DOI: 10.1016/j.procbio.2012.09.025

Google Scholar

[24] L. Kvitek, A. Panacek, J. Soukupova, M. Kolar, R. Vecerova, R. Prucek, Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles, J. Phys. Chem. 122 (2008) 5825-5834.

DOI: 10.1371/journal.pone.0103675

Google Scholar

[25] S.V. Otari, R.M. Patil, N.H. Nadaf, S.J. Ghosh, S.H. Pawar, Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp , Mater. Lett. 72 (2012) 92-94.

DOI: 10.1016/j.matlet.2011.12.109

Google Scholar

[26] S.V. Otari, R.M. Patil, S.J. Ghosh, S.H. Pawar, Green phytosynthesis of silver nanoparticles using aqueous extract of Manilkara zapota (L. ) seeds and its inhibitory action against Candida species, Mater. Lett. 72 (2014) 367-369.

DOI: 10.1016/j.matlet.2013.11.066

Google Scholar

[27] F. Okafor, A. Janen, T. Kukhtareva, V. Edwards, M. Curley, Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity, Int. J. Environ. Res. Public Health. 10 (2013) 5221-5238.

DOI: 10.3390/ijerph10105221

Google Scholar