Green Biosynthesis of Anisotropic Gold Nanoparticles Using Ampelopsis grossedentata Extract and their Shape-Controlled by Halogen

Article Preview

Abstract:

The preparation of size- and shape- controlled metallic nanoparticles using biological methodologies is a noticeably stimulating research field due to their unique physicochemical properties. In this paper, biosynthesis of anisotropic AuNPs using Ampelopsis grossedentata extract and the effects of halide ions on the formation of AuNPs has been demonstrated. The sizes and morphologies of AuNPs were characterized by UV-vis-NIR spectrophotometer and Transmission Electron Microscopy (TEM). It showed that the shape, size and optical properties of AuNPs can be fine-tuned by varying the dosage of the vine tea extract. The presence of halogen ions has significantly influence the morphology of AuNPs during the synthesis process. Both of Br- and Cl- could produced nanoplates, whereas I- distorted the triangle nanoparticles to induce the formation of aggregated spherical ones.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-135

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Rosi NL, Mirkin CA, Nanostructures in biodiagnostics, Chem ReV. 105 (2005) 1547-1562.

DOI: 10.1021/cr030067f

Google Scholar

[2] Jain PK, Lee KS , El-Sayed IH , El-Sayed MA, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine, J. Phys. Chem. B. 110 (2006).

DOI: 10.1021/jp057170o

Google Scholar

[3] Marinakos SM, Shultz DA, Feldheim DL, Au particles as templates for the synthesis of hollow conductive polymer nanocapsules, Adv. Mater. 11 (1991) 34-37.

DOI: 10.1002/(sici)1521-4095(199901)11:1<34::aid-adma34>3.0.co;2-i

Google Scholar

[4] Yu Y, Kant K, Shapter JG, Jonas AM, Dusan L, Gold nanotube membranes have catalytic properties, Micropor Mesopor Mat. 153 (2012) 131-136.

DOI: 10.1016/j.micromeso.2011.12.011

Google Scholar

[5] Xia YN, Xia XH, Wang Y, Xie SF, Shape-controlled synthesis of metal nanocrystals, Mrs Bulletin. 38 (2013)335-344.

DOI: 10.1557/mrs.2013.84

Google Scholar

[6] Jana N R , L Gearheart, C J Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods, J. Phys. Chem. B. 105 (2001) 4065-4067.

DOI: 10.1021/jp0107964

Google Scholar

[7] Jana N R, L Gearheart, C J Murphy, Seeding growth for size control of 5−40 nm diameter gold nanoparticles, Langmuir. 17 (2001) 6782-6786.

DOI: 10.1021/la0104323

Google Scholar

[8] Nikoobakht B, El-Sayed M A, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem. Mater. 15 (2003) 1957-(1962).

DOI: 10.1021/cm020732l

Google Scholar

[9] Ji C, Searson P C, Synthesis and characterization of nanoporous gold nanowires, J. Phys. Chem. B. 107 (2003) 4494-4499.

DOI: 10.1021/jp0222200

Google Scholar

[10] Pei L, K. Mori, M. Adachi, Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization. Langmuir. 20 (2004) 7837-7843.

DOI: 10.1021/la049262v

Google Scholar

[11] B K Pong, H I Elim, J X Chong, W Ji, B L Trout, J Y Lee, New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J. Phys. Chem. C. 111 (2007).

DOI: 10.1021/jp068666o

Google Scholar

[12] J E Millstone, S Park, K L Shuford, L Qin, G C Schatz, C A Mirkin, Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms, J. Am. Chem. Soc. 127 (2005) 5312-5313.

DOI: 10.1021/ja043245a

Google Scholar

[13] X Sun, S Dong, E Wang, High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process, Langmuir. 21 (2005) 4710-4712.

DOI: 10.1021/la047267m

Google Scholar

[14] F Kim, S Connor, H Song, T Kuykendall, P Yang, Platonic gold nanocrystals, Angew. Chem. Int. Ed. 43 (2004) 3673-3677.

DOI: 10.1002/anie.200454216

Google Scholar

[15] C S Ah, Y J Yun, H J Park, W Kim, D H Ha, W S Yun, Size-controlled synthesis of machinable single crystalline gold nanoplates, Chem. Mater. 17 (2005) 5558-5561.

DOI: 10.1021/cm051225h

Google Scholar

[16] N Basavegowda, A Idhayadhulla, Y R Lee, Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities, Ind Crop Prod. 52 (2014) 745-751.

DOI: 10.1016/j.indcrop.2013.12.006

Google Scholar

[17] Garg N, Scholl C, Mohanty A, Jin R, The role of bromide ions in seeding growth of Au nanorods, Langmuir. 26 (2010) 10271-10276.

DOI: 10.1021/la100446q

Google Scholar

[18] Millstone JE, Wei W, Jones MR, Yoo H, Mirkin CA, Iodide ions control seed-mediated growth of anisotropic gold nanoparticles, Nano Lett. 8 (2008) 2526-2529.

DOI: 10.1021/nl8016253

Google Scholar

[19] El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res. 34 (2001) 257-264.

DOI: 10.1021/ar960016n

Google Scholar

[20] Zong RL, Zhou J, Li Q, Du B, Li B, Fu M, Qi XW, Li LT, Buddhudu S, Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane, J. Phys. Chem. B. 108 (2004) 16173-16716.

DOI: 10.1021/jp0474172

Google Scholar

[21] Langille M R, Personick M L, Mirkin C A, Plasmon-Mediated Syntheses of Metallic Nanostructures, Angew. Chem. Int. Edit. 52 (2013) 13910-13940.

DOI: 10.1002/anie.201301875

Google Scholar

[22] Amendola V, Meneghetti M, Size evaluation of gold nanoparticles by UV-vis spectroscopy, J. Phys. Chem. C. 113 (2009) 4277-4285.

DOI: 10.1021/jp8082425

Google Scholar

[23] Magnussen OM, Ocko BM, Adzic RR, Wang JX, X-ray diffraction studies of ordered chloride and bromide monolayers at the Au(111)-solution interface, Phys. Rev. B. 51 (1995) 5510-5513.

DOI: 10.1103/physrevb.51.5510

Google Scholar

[24] A Rai, A Singh, A Ahmad, M Sastry, Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles, Langmuir. 22 (2006) 736-741.

DOI: 10.1021/la052055q

Google Scholar

[25] S E Lohse, N D Burrows, L Scarabelli, L M Liz-Marzán, C J Murphy, Anisotropic noble metal nanocrystal growth: The role of halides, Chem. Mater. 26 (2014) 34-43.

DOI: 10.1021/cm402384j

Google Scholar

[26] J S DuChene, W Niu, J M Abendroth, Q Sun, W Zhao, F Huo, W D Wei, Halide anions as shape-directing agents for obtaining high-quality anisotropic gold nanostructures, Chem. Mater. 25 (2013) 1392-1399.

DOI: 10.1021/cm3020397

Google Scholar

[27] T H Ha, H Koo, B H Chung, Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide Ions, J. Phys. Chem. C. 111 (2007) 1123-1130.

DOI: 10.1021/jp066454l

Google Scholar

[28] Cheng W, Dong S, Wang E, Iodine-induced gold nanoparticle fusion /fragmentation/ aggregation and iodine-linked nanostructured assemblies on a glass substrate, Angew. Chem. Int. Ed. 42 (2007) 449-452.

DOI: 10.1002/anie.200390136

Google Scholar