Modified ITAT Model for Data Retention in Nanocrystals Based Flash Memory Gate Stack

Article Preview

Abstract:

This work applies combination of Direct Tunneling model and BSIM4 based ITAT model to explain the leakage of electrons from charged nanocrystals to p-type silicon substrate in data retention condition, for an ultra-thin tunnel oxide, low voltage programmable silicon nanocrystal based flash gate stack. Basic expressions of these models are modified to incorporate the nanocrystals related charge leakage in idle mode. The concept is supported by simulating these models and comparing them with the experimental data. Transition of electrons is considered as a result of Direct Tunneling and their trapping de-trapping via water related hydrogen traps. However, it is found that modified ITAT mechanism is the dominant one. Flat-band voltage shift profile fits accurately with the model with an extrapolated 10 years device lifetime without memory closure. 3 nm thick tunnel oxide and 100 nm sized nanocrystal fabrication with Electron Beam Lithography are main features of the devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. S. Scott, N. A. Dumin, T. W. Hughes, D. J. Dumin, B. T. Moore, Properties of High-Voltage Stress Generated Traps in Thin Silicon, IEEE Trans. Elect. Dev. 43 (1996)1133-1143.

DOI: 10.1109/16.502425

Google Scholar

[2] FarhanRana, SandipTiwari, J. J. Welser, Kinetic Modelling of Electron Tunneling Processes in Quantum Dots Coupled to Field-Effect Transistors AP J. Superlattices Microstructures. 23 (1998) 757-770.

DOI: 10.1006/spmi.1997.0539

Google Scholar

[3] C. MonzioCompagnoni, D. Ielmini, A. S. Spinellit, A. L. Lacaita, C. Previtali, C. Gerardi, Study of Data Retention for Nanocrystal Flash Memories, Proc. IEEE 41st Annual lnt. Symp. on Reliability Physics. (2003) 507-512.

DOI: 10.1109/relphy.2003.1197800

Google Scholar

[4] M. Depas, B. Vermeire, P. W. Mertens, R. L. Van Meirhaeghe, M. M. Heyns, Determination of Tunnelling Parameters in Ultra-thin Oxide Layer Poly-Si/SiO2/Si Structures, Elsevier J. Solid-State Electronics. 38 (1995)1465-1471.

DOI: 10.1016/0038-1101(94)00269-l

Google Scholar

[5] Jonghwan Lee, GijsBosman, Keith R. Green, D. Ladwig, Model and Analysis of Gate Leakage Current inUltrathin Nitrided Oxide MOSFETs, IEEE Trans. Electron. Dev. 49 (2002)1232-1241.

DOI: 10.1109/ted.2002.1013281

Google Scholar

[6] Dong-Won Kim, Taehoon Kim, Sanjay K. Banerjee, Memory Characterization of SiGe Quantum Dot Flash Memories With HfO2/SiO2 Tunneling Dielectrics, IEEE Trans. Electron. Dev. 50 (2003)1823-1829.

DOI: 10.1109/ted.2003.815370

Google Scholar

[7] F. Jimenez-Molinos, F. Gamiz, A. Palma, P. Cartujo, J. A. Lo, Direct and Trap-Assisted Elastic Tunneling through Ultrathin Gate Oxides, J. Appl. Phy. 91 (2002)5116-5124.

DOI: 10.1063/1.1461062

Google Scholar

[8] Tuo-Hung Hou, Jaegoo Lee, Jonathan T Shaw, Edwin C Kan, Flash Memory Scaling: From Material Selection to Performance Improvement (2007) www. researchgate. net.

Google Scholar

[9] Barbara De Salvo, CosimoGerardi, Rob van Schaijk, Salvatore A. Lombardo, DomenicoCorso, Cristina Plantamura, Stella Serafino, Giuseppe Ammendola, Michiel van Duuren, Pierre Goarin, Wan Yuet Mei, Kees van der Jeugd, Thierry Baron, Marc Gély, Pierre Mur, Simon Deleonibus, Performance and Reliability Features of Advanced Nonvolatile Memories Based on Discrete Traps (Silicon Nanocrystals, SONOS), IEEE Trans. Dev. Mat. Rel. 4 (2004).

DOI: 10.1109/tdmr.2004.837209

Google Scholar

[10] International Technology Roadmap for Semiconductors (ITRS) (2013) http: /www. itrs. net.

Google Scholar

[11] Robin Degraeve, Guido Groeseneken, Rudi Bellens, Jean Luc Ogier, MichelDepas, Philippe J. Roussel, Herman E. Maes, New Insights in the Relation between Electron Trap Generation and theStatistical Properties of Oxide Breakdown, IEEE Trans. Electron Dev. 45 (1998).

DOI: 10.1109/16.662800

Google Scholar

[12] E. H. Nicollean and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley-Inderscience Publication, (1982).

Google Scholar

[13] W. R. Thurber, R. L. Mattis, Y. M. Liu, and J. J. Filliben: National Bureau of Standards Special Publication (1981) 400-464.

Google Scholar

[14] W. C. Lee, C. Hu, Modeling Gate and Substrate Currents due to Conduction-and-Valence-Band Electron and Hole Tunneling, IEEE Dig. VLSI Tech. (2000) 198-199.

DOI: 10.1109/vlsit.2000.852824

Google Scholar