One-Step Preparation of Green Fluorescent Graphene Quantum Dots from Petroleum Asphalt

Article Preview

Abstract:

Inherently benefiting from the natural nanosize graphene-structure in raw asphalt material. Asphalt-derived graphene quantum dots ( GQDs ) are prepared through, a facile route, one-step chemical oxidation of cheap petroleum asphalt. The as-prepared GQD sample may be well dissolved in water with a good homogeneous size at an average diameter of 2.44 nm, luminescing bright green light by excitation of 365 nm with a high quantum yield up to 16.13%. Furthermore, they are much smaller and thinner than most of the reported GQDs, presenting excellent fluorescent properties, such as excitation-tuned photoluminescence and good resistance to photobleaching. They are much smaller and thinner than most of the reported GQDs

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-83

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Li, X. He, Z. Kang, H. Huang, Y. Liu,; J. Liu, S. Lian, C. H. A. Tsang, X. Yang, S. T. Lee, Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design, Angew. Chem. Int. Ed. 49 (2010) 4430-4434.

DOI: 10.1002/anie.200906154

Google Scholar

[2] L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Chaotic Dirac Billiard in Grapheme Quantum Dots, Science 320 ( 2008 ) 356-358.

DOI: 10.1126/science.1154663

Google Scholar

[3] L.S. Li, X. Yan, Colloidal Graphene Quantum Dots, J. Phys. Chem. Lett. 1 ( 2010 ), 2572-2576.

Google Scholar

[4] S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Stongly Green-Photoluminescent Grapheme Quantum Dots for Bioimaging Application, Chem. Commum. ( 47 ) 2011 6858-6860.

DOI: 10.1039/c1cc11122a

Google Scholar

[5] S.T. Yang, L. Cao, P.G. Luo, F. Lu, X. Wang, H. Wang, M.J. Meziani, Y. Liu, G. Qi, Y.P. Sun, Carbon Dots for Optical Imaging in Vivo, J. Am. Chem. Soc., ( 131) 2009 11308-11309.

DOI: 10.1021/ja904843x

Google Scholar

[6] Q. L. Zhao, Z. L. Zhang, B.H. Huang, J. Peng, M. Zhang, D.W. Pang, Facile Preparation of Low Cytotoxicity Fluorescent Carbon Nanocrystals by Electrooxidation of Graphite, Chem. Commun. (2008) 5116-5118.

DOI: 10.1039/b812420e

Google Scholar

[7] H. Ming, Z. Ma, Y. Liu, K. Pan, H. Yu, F. Wang, Z. Kang. Large Scale Electrochemical Synthesis of High Quality Carbon Nanodots and Their Photocatalytic Property, Dalton Trans., 41 (2012) 9526-9531.

DOI: 10.1039/c2dt30985h

Google Scholar

[8] J. Lu, J.X. Yang, J. Wang, A. Lim, S. Wang, K.P. Loh, One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids, ACS Nano, 3 (2009) 2367-2375.

DOI: 10.1021/nn900546b

Google Scholar

[9] L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite, J. Am. Chem. Soc. 13 ( 2009 ) 4564-4565.

DOI: 10.1021/ja809073f

Google Scholar

[10] J. Zhou, C. Booker, R. Li, X. Zhou, T. K. Sham, X. Sun, Z. Ding, An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs), J. Am. Chem. Soc. 129 ( 2007 ) 744-745.

DOI: 10.1021/ja0669070

Google Scholar

[11] D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots, Adv. Mater. 22 (2010) 734-738.

DOI: 10.1002/adma.200902825

Google Scholar

[12] L.B. Tang, R.B. Ji, X.K. Cao, J.Y. Lin, H.X. Jiang, X.M. Li, K.S. Teng, C.M. Luk, S.J. Zeng, J.H. Hao, S.P. Lau, Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots, ACS Nano, 6 ( 2012 ) 5102-5110.

DOI: 10.1021/nn300760g

Google Scholar

[13] X.H. Wang, K.G. Qu, B.L. Xu, J.S. Ren, X.G. Qu, Microwave Assisted One-Step Green Synthesis of Cell-Permeable Multicolor Photoluminescent Carbon Dots Without Surface Passivation Reagents, J. Mater. Chem. 2011, 21, 2445-2450.

DOI: 10.1039/c0jm02963g

Google Scholar

[14] Sedghi, M.; Goual, L.; Welch, W.; Kubelka, J. Effect of Asphaltene Structure on Association and Aggregation using Molecular Dynamics, J. Phys. Chem. B. 2013, 117, 5765−5776.

DOI: 10.1021/jp401584u

Google Scholar

[15] I. F. Cheng, Y. Xie, R. A. Gonzales, P. R. Brejna, J. P. Sundararajan, B. A. F. Kengne, D. E. Aston, D. N. Mcilroy, J. D. Foutch, P. R. Griffiths, Synthesis of Graphene Paper from Pyrolyzed Asphalt, Carbon. 49 (2011) 2852-2861.

DOI: 10.1016/j.carbon.2011.03.020

Google Scholar

[16] O.C. Mullins, H. Sabbah, J. Eyssautier, A.E. Pomerantz, L. Barré, A.B. Andrews, Y. Ruiz-Morales, F. Mostowfi, R. Mcfarlane, L. Goual, Advances in Asphaltene Science and the Yen-Mullins Model. Energy Fuels. 26 ( 2012 ) 3986−4003.

DOI: 10.1021/ef300185p

Google Scholar

[17] A.N.M. Carauta, J.C.G. Correia, P.R. Seidl, D.M. Silva, Conformational Search and Dimerization Study of Average Structures of Asphaltenes, J. Mol. Struct. (Theochem). 2005, 755, 1−8.

DOI: 10.1016/j.theochem.2005.02.063

Google Scholar

[18] E. Y Sheu, Small angle scattering and asphaltenes, J. Phys.: Condens. Matter. 18 (2006) 2485-2498.

Google Scholar

[19] Wang F, Gu Z, Lei Wu, Wang W, Xia X, Hao Q. Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions. Sensor Actuat B Chem 2014, 190: 516-522.

DOI: 10.1016/j.snb.2013.09.009

Google Scholar

[20] X. Yan, X. Cui, L. Li, Synthesis of Large, Stable Colloidal Graphene Quantum Dots With Tunable Size, J Am Chem Soc 132 (2010) 5944-5945.

DOI: 10.1021/ja1009376

Google Scholar

[21] S. Zhu, J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, Q. Meng, Y. Li, C. Shi, R. Hu, B. Yang, Graphene Quantum Dots With Controllable Surface Oxidation, Tunable Fluorescence and Up-Conversion Emission, RSC Adv 2 (2012) 2717-2720.

DOI: 10.1039/c2ra20182h

Google Scholar

[22] M. Zhang, L. Bai, W. Shang, W. Xie, H. Ma, Y. Fu, D. Fang, H. Sun, L. Fan, M. Han, C. Liu, S. Yang, Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells, J Mater Chem 22 (2012).

DOI: 10.1039/c2jm16835a

Google Scholar

[23] J. Lee, K. Kim, W.I. Park, B.H. Kim, J.H. Park, T.H. Kim, S. Bong, C.H. Kim, G. Chae, M. Jun, Y.H. Wang, Y.S. Jung, S. Jeon, Uniform Graphene Quantum Dots Patterned from Self-Assembled Silica Nanodots, Nano Lett. 12 (2012) 6078-6083.

DOI: 10.1021/nl302520m

Google Scholar

[24] H. Ding, L.W. Cheng, Y.Y. Ma, J.L. Kong, H.M. Xiong, Luminescent Carbon Quantum Dots and Their Application in Cell Imaging. New. J. Chem. 37 (2013) 2515-2520.

DOI: 10.1039/c3nj00366c

Google Scholar

[25] S.L. Hu, K.Y. Niu, J. Sun, J. Yang, N. Q. Zhao, X.W. Du, One-Step Synthesis of Fluorescent Carbon Nanoparticles by Laser Irradiation, J. Mater. Chem. 19 (2009) 484-488.

DOI: 10.1039/b812943f

Google Scholar

[26] R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li, An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers, Angew. Chem. Int. Ed. 48 (2009) 4598 -4601.

DOI: 10.1002/anie.200900652

Google Scholar

[27] H. Peng, J. Travas-Sejdic, Simple Aqueous Solution Route to Luminescent Carbogenic Dots from Carbohydrates, Chem. Mater. 21 (2009) 5563-5565.

DOI: 10.1021/cm901593y

Google Scholar

[28] A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E.P. Giannelis, small 4 ( 2008 ) 455-458.

DOI: 10.1002/smll.200700578

Google Scholar

[29] Y. Sun, B. Zhou, Y. Lin, W. Wang, K.A. S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S. Xie, Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence, J. Am. Chem. Soc. 128 (2006).

DOI: 10.1021/ja062677d

Google Scholar

[30] L. Wang, H. L. Zhou, Anal. Chem. 2014, 86, 8902.

Google Scholar

[31] M. Wu, Y. Wang, W. Wu, C. Hu, X. Wang, J. Zheng, Z. Li, B. Jiang, J. Qiu, Preparation of Functionalized Water-Soluble Photoluminescent Carbon Quantum Dots From Petroleum Coke, Carbon 78 (2014) 480-489.

DOI: 10.1016/j.carbon.2014.07.029

Google Scholar