Effect of Ag, Cu, and ZnO Nanoparticle Suspensions on the Antimicrobial Activity of Tribulus Terrestris Herbal Extracts

Article Preview

Abstract:

In this study, the antimicrobial growth inhibition and mechanistic activities of silver (Ag NPs), zinc oxide (ZnO NPs), and copper (Cu NPs) nanoparticles were investigated in presence of medicinal plant extracts of Tribulus Terrestris. The extract in different concentrations (5, 10, 20, and 30%) along with nanoparticles suspension mixture was used for antimicrobial activity testing against some human pathogenic microorganisms. Among the bacterial strains tested, Escherichia coli and Proteus sp were most susceptibile at 30% concentration followed by moderate activity against Morganella sp, Entrococcus Faecalis, Staphylococcus aureus, and Candida albicans. Tribulus Terrestris had no effect on Acetobacter sp and Streptococcus agalactia. The nanoparticles used in the present investigation have shown excellent antimicrobial activity in the presence of Tribulus Terrestris, hence they can be used as potent sources for antibacterial agents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-109

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Xia, S.C. Lenaghan, M. Zhang, Z. Zhang,Q. Li, Naturally occurring nanoparticles from English Ivy: an alternative to metal based nanoparticles for UV protection, Journal of Nanobiotechnology, 8 (2010) 12.

DOI: 10.1186/1477-3155-8-12

Google Scholar

[2] L. Gardea-Torresdey, E. Gomez, J.R. Peralta-VideaH.E. Troiani, P. Santiago, M. Jose-Yacaman, Formation and growth of Au nanoparticles inside live Alfalfa plants, Nano Letters, 2 (2002) 1357-1361.

DOI: 10.1021/nl015673+

Google Scholar

[3] L. Gardea-Torresdey, E. Gomez, J.R. Peralta-VideaH.E. Troiani, P. Santiago, M. Jose-Yacaman, Alfalfa spouts: a natural source for the synthesis of silver nanoparticles, Langmuir, 19 (2003) 1357-1361.

DOI: 10.1021/la020835i

Google Scholar

[4] J.Y. Song, B.S. kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts, Bioprocess Biosyst Eng., 32 (2009) 79-84.

DOI: 10.1007/s00449-008-0224-6

Google Scholar

[5] S.S. Shankar, A. Ahmed, M. Shastry, Geranium leaf assisted biosynthesis of silver nanoparticles, Biotechnology Progress, 19 (20030 1627-1631.

DOI: 10.1021/bp034070w

Google Scholar

[6] S.S. Shankar, A. Ahmed, M. Shastry, rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azardirachta indica) leaf broth, Journal of Collid Interface Science, 275 (2004) 496-502.

DOI: 10.1016/j.jcis.2004.03.003

Google Scholar

[7] M. D Eby, N.M. Schaeublin, S.M. Hussain, G.R. Jhonson, Lysosome catalyzes the formation of antimicrobial silver nanoparticles, ACS Nano, 3 (2009) 984-997.

DOI: 10.1021/nn900079e

Google Scholar

[8] V. Bakumov, K. Gueinius, C. Hermann, M. Schwarz, E. Kroke, Poly-silazane-derived antibacterial silver-ceramic nanocomposites, Journal of European Ceramic Society, 27(2007)3287-3292.

DOI: 10.1016/j.jeurceramsoc.2007.01.004

Google Scholar

[9] C. Damm, H. Munstedt, A. Rosch, The antimicrobial efficacy of poly-amide 6/silver-nano-and-microcomposites, Materials Chemistry and Physics, 108 (2008) 61-66.

DOI: 10.1016/j.matchemphys.2007.09.002

Google Scholar

[10] S.M. Hussain, K. L Hess, J.M. Gearhart, K. T Geiss, J.J. Schlager, In Vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicology in vitro 19 (2005), 975-983.

DOI: 10.1016/j.tiv.2005.06.034

Google Scholar

[11] W.K. Jung, H.C. Koo, K.W. Kim, S. Shin, S.H. Kim, Y.H. Park, Antibacterial activity and mechanism of action of the silver ion in staphylococcus aureus and Escherichia coli, Applied and Environmental Microbiology, 74 (2008) 2171-2178.

DOI: 10.1128/aem.02001-07

Google Scholar

[12] J. Liao, A. Mo, H. Wu, J. Zhang, Y. Li, G. Lv, antibacterial activity of silver-hydroxyapatice/titanium nanoparticleson oral bacteria, Key-Engineering Materials, 330-332 (2007) 299-302.

DOI: 10.4028/www.scientific.net/kem.330-332.299

Google Scholar

[13] S. Srivastava, T. Bera, A. roy, G. Singh, P. Ramachandra Rao, D. Dash, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, 18 (2007), 225103-22512.

DOI: 10.1088/0957-4484/18/22/225103

Google Scholar

[14] H.Y. Song, K.K. Ko, I.H. Oh, B.T. Lee, fabrication of silver nanoparticles and their antimicrobial mechanism, European Cells and Materials, 11 (2006) 58.

Google Scholar

[15] G. Thirumurugan, S.M. shaheeda, M.D. Dhanarajulu, In-vitro evaluation of antibacterial activity of silver nanoparticles synthesized by using Phytophtora infeastans, International Journal of ChemTech Research, 1(3) (2009), 714-716.

Google Scholar

[16] K. Xing, X.G. Chen, M. Kong, C. S, Liu, D.S. Cha, H.J. Park, effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococus aureu, Carbohydrate Polymers, 76 (2009).

DOI: 10.1016/j.carbpol.2008.09.016

Google Scholar

[17] L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behavior of suspensions of ZnO particles, Journal of Nanoparticle Reviews, 9 (3) (2007) 479-489.

DOI: 10.1007/s11051-006-9150-1

Google Scholar

[18] Z. Huang, X. Zheng, D. Yan, G. Yin, X. Liao, Y. Kang, Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 24 (2008) 4140-4144.

DOI: 10.1021/la7035949

Google Scholar

[19] L. He, Y. Liu, A. Mustapha, M. Lin. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicilliumexpansum. Microbiol Res. 166 (2011) 207-215.

DOI: 10.1016/j.micres.2010.03.003

Google Scholar

[20] S. Lin, Y. Zhao, T. Xia, H. Meng, Z. Ji, R. Liu. High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano, 5 (2011) 7284-7295.

DOI: 10.1021/nn202116p

Google Scholar

[21] I. Subhankari and P.L. Nayak, Antimicrobial Activity of Copper Nanoparticles Synthesised by Ginger (Zingiber officinale) Extract, World journal of Nano Science and technology, 2(2013)10-13.

Google Scholar

[22] K. Kamalpreet, K. Navneet, and S. Narinder, Imine coupled ZnO based fluorescent chemosensor for the simultaneous estimation of Al3+ and Cr3+ , Materials letters, 80 (2012) 78-80.

DOI: 10.1016/j.matlet.2012.04.043

Google Scholar

[23] W. Trease, C. Evans. Pharmacognosy (13th ed). ELBS with Tindall. UK. (2002).

Google Scholar

[24] Ahmed Qureshi, Declan P Naughton and Andrea Petroczi, A systematic review on the herbal extract Tribulus terrestris and the roots of its Putative Aphrodisiac and performance enhancing effect, Journal of Dietary Supplements, 4 (2014).

DOI: 10.3109/19390211.2014.887602

Google Scholar

[25] W.L. Craig. Am. J. Cli. Nutr. 20 (1999) 44.

Google Scholar

[26] M.K. Abdul-Wahed, Investigation of the steroidal saponins of Tribulus sp. widely grown in Iraq. M. Sc. Thesis, College of Pharmacy. Baghdad University (2002).

Google Scholar

[27] M. Li, W. Qu, Y. Wang, H. Wang, Tian, C. Zhong Yao Cai. Hypoglycemic effect of saponin from Tribulus terrestris, 25 (2002) 420.

Google Scholar

[28] M.R. Heidari, M. Mehrabani, A. Pardakhty, P. Khazaeli, M.J. Zahedi, M. Yakhchali, M. Vahedian, The analgesic effect of Tribulus terrestris extract and comparison of gastric ulcerogenicity of the extract with indomethacine in animal experiments, Ann. N.Y. Acad. Sci. 1095 (2007).

DOI: 10.1196/annals.1397.045

Google Scholar

[29] A.M. Sharifi, R. Darabi, N. Akbarloo, Study of antihypertensive mechanism of Tribulus terrestris in 2K1C hypertensive rats: role of tissue ACE activity, Life Sci. 73 (2003) 2963.

DOI: 10.1016/j.lfs.2003.04.002

Google Scholar

[30] S. Chu, W. Qu, X. Pang, B. Sun, and X. Huang, Effect of saponin from Tribulus terrestris on hyperlipidemia, 26 (2003) 341.

Google Scholar

[31] M. Shafighi, L. Amjad, M. Madani, Effect of Fungal Growth Inhibition from Pomegranate Flower and Peel Extracts. International Conference on Applied Life Sciences (2012) 377-380.

Google Scholar

[32] NCCLS (National Committee for Clinical Laboratory extracts including phenols, tannins and flavonoids as Standard), (1999).

Google Scholar

[33] M.J. Moshi, Z.H. Mbwambo, M.C. Kapingu, V.H. Mhozya,.C. Marwa, Antimicrobial and Brine Shrimp Lethality of extracts of Terminalia mollis Laws. Afri J. Trad. CAM. 3 (2006) 1-10.

DOI: 10.4314/ajtcam.v3i3.31166

Google Scholar

[34] J.G. Eldiasty.; M. Hassan, Mosaad, O.M.H.M. Kamel, Evaluation of some agricultural waste extracts against mosquito larvae, and some types of microorganisms as insecticidal and antibiotic agents. Egypt. Acad. J. Biolog. Sci., 6 (2014) 1 – 16.

DOI: 10.21608/eajbsg.2014.16625

Google Scholar

[35] V. Lalitha, B. Kiran, K.A. Raveesha, In Vitro Evaluation of MimusopsElengiL. Plant ExtractFor Antibacterial Activity And PhytochemicalAnalysis. Pharmacophore, 2 (2011) 78-85.

Google Scholar

[36] T. Ndyetabura, L.S. Lyantagaye, and M.A. Mshandete, Antimicrobial activity of ethyl acetate extracts from edible Tanzanian Coprinuscinereus (Schaeff) S. Gray s. lat. Cultivated on grasses supplemented with cow dung manure. ARPN Journal of Agricultural and Biological Science 5, (2010).

Google Scholar

[37] A. Jindal, P. Kumar, and G. Singh, In vitro antimicrobial activity of Tribulus terrestris L. Int J Pharm Pharm. Sci, 4, (2012) 270-272.

Google Scholar

[38] M. Raja and R. Venkataraman, Antibacterial studies on medicinal plants used in urinary disorders. J. Nat. Prod. Plant Resource, 1 (2011) 67-70.

Google Scholar

[39] S.K. Prakash, Effects of herbal extracts towards microbicidal activity against pathogenic E. coli in poultry. Int J Poultry Sci, 3 (2006) 259-261.

DOI: 10.3923/ijps.2006.259.261

Google Scholar

[40] V.K. Deshwal, and K. Vig, Screening for Antibacterial activity of seeds of Tribulusterrestris L. growing in Uttarakhand (INDIA). Int J Pharmaceutical Invent, 1 (2011) 42-46.

Google Scholar

[41] A.G. El-Ghaban, J.G. Eldiasty, and O.M.H. Kamel, Evaluation of Rosmarinus species extracted by different solvents against mosquito larvae, Biomophalaria species and different pathogenic bacteria. J Adv Sci Res, 6 (2015) 1-5.

Google Scholar

[42] Y.E. Lin, R.D. Vidic, J.E. Stout, C.A. McCartney, and V.L. Yu, Inactivation of Mycobacterium avium by copper and silver ions, Water Res. 32 (1998) (2000).

DOI: 10.1016/s0043-1354(97)00460-0

Google Scholar

[43] H. Kong and J. Jang, Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanparticles. Langmuir. 24 (2008) 2051–(2056).

DOI: 10.1021/la703085e

Google Scholar

[44] J. Poovizhi and B. Krishnaveni, Synthesis, Characterization and Antimicrobial Activity of Zinc Oxide Nanoparticles Synthesized Fro Calotropis procera. Int. J. of Pharmaceutical Sciences and Drug Research. 7 (2015) 425-431.

Google Scholar