[1]
D. Shrestha, A. Jenei, P. Nagy, G. Vereb, J. Szöllősi, Understanding FRET as a Research Tool for Cellular Studies, Int. J. Mol. Sci., 16 (2015) 6718.
DOI: 10.3390/ijms16046718
Google Scholar
[2]
X. Qiu, N. Hildebrandt, Rapid and Multiplexed MicroRNA Diagnostic Assay Using Quantum Dot-Based Förster Resonance Energy Transfer, ACS Nano, 9 (2015) 8449-8457.
DOI: 10.1021/acsnano.5b03364
Google Scholar
[3]
C.I. Richards, J. -C. Hsiang, A.M. Khalil, N.P. Hull, R.M. Dickson, FRET-Enabled Optical Modulation for High Sensitivity Fluorescence Imaging, J. Am. Chem. Soc., 132 (2010) 6318-6323.
DOI: 10.1021/ja100175r
Google Scholar
[4]
L. Yuan, W. Lin, K. Zheng, S. Zhu, FRET-Based Small-Molecule Fluorescent Probes: Rational Design and Bioimaging Applications, Acc. Chem. Res., 46 (2013) 1462-1473.
DOI: 10.1021/ar300273v
Google Scholar
[5]
S. Ghosh, N.K. Das, U. Anand, S. Mukherjee, Photostable Copper Nanoclusters: Compatible Förster Resonance Energy-Transfer Assays and a Nanothermometer, J. Phys. Chem. Lett., 6 (2015) 1293-1298.
DOI: 10.1021/acs.jpclett.5b00378
Google Scholar
[6]
I. Hadar, S. Halivni, N. a. Even-Dar, A. Faust, U. Banin, Dimensionality Effects on Fluorescence Resonance Energy Transfer between Single Semiconductor Nanocrystals and Multiple Dye Acceptors, J. Phys. Chem. C, 119 (2015) 3849-3856.
DOI: 10.1021/jp512678j
Google Scholar
[7]
M. Hengesbach, N. -K. Kim, J. Feigon, M.D. Stone, Single-Molecule FRET Reveals the Folding Dynamics of the Human Telomerase RNA Pseudoknot Domain, Angew. Chem., Int. Ed., 51 (2012) 5876-5879.
DOI: 10.1002/anie.201200526
Google Scholar
[8]
D.S. Folk, J.C. Torosian, S. Hwang, D.G. McCafferty, K.J. Franz, Monitoring β-Secretase Activity in Living Cells with a Membrane-Anchored FRET Probe, Angew. Chem., Int. Ed., 51 (2012) 10795-10799.
DOI: 10.1002/anie.201206673
Google Scholar
[9]
K.B. Gemmill, S.A. Dı́az, J.B. Blanco-Canosa, J.R. Deschamps, T. Pons, H. -W. Liu, A. Deniz, J. Melinger, E. Oh, K. Susumu, M.H. Stewart, D.A. Hastman, S.H. North, J.B. Delehanty, P.E. Dawson, I.L. Medintz, Examining the Polyproline Nanoscopic Ruler in the Context of Quantum Dots, Chem. Mater., 27 (2015).
DOI: 10.1021/acs.chemmater.5b03181
Google Scholar
[10]
K.E. Sapsford, L. Berti, I.L. Medintz, Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor–Acceptor Combinations, Angew. Chem., Int. Ed., 45 (2006) 4562-4589.
DOI: 10.1002/anie.200503873
Google Scholar
[11]
P. Biswas, L.N. Cella, S.H. Kang, A. Mulchandani, M.V. Yates, W. Chen, A quantum-dot based protein module for in vivo monitoring of protease activity through fluorescence resonance energy transfer, Chem. Commun., 47 (2011) 5259-5261.
DOI: 10.1039/c1cc10648a
Google Scholar
[12]
A.M. Dennis, G. Bao, Quantum Dot−Fluorescent Protein Pairs as Novel Fluorescence Resonance Energy Transfer Probes, Nano Lett., 8 (2008) 1439-1445.
DOI: 10.1021/nl080358+
Google Scholar
[13]
Y. -Q. Dang, H. -W. Li, Y. Wu, Construction of a Supramolecular Förster Resonance Energy Transfer System and Its Application Based on the Interaction between Cy3-Labeled Melittin and Phosphocholine Encapsulated Quantum Dots, ACS Appl. Mater. Interfaces, 4 (2012).
DOI: 10.1021/am3000984
Google Scholar
[14]
B. Gong, B. -K. Choi, J. -Y. Kim, D. Shetty, Y.H. Ko, N. Selvapalam, N.K. Lee, K. Kim, High Affinity Host–Guest FRET Pair for Single-Vesicle Content-Mixing Assay: Observation of Flickering Fusion Events, J. Am. Chem. Soc., 137 (2015) 8908-8911.
DOI: 10.1021/jacs.5b05385
Google Scholar
[15]
W. Wang, A. Kapur, X. Ji, M. Safi, G. Palui, V. Palomo, P.E. Dawson, H. Mattoussi, Photoligation of an Amphiphilic Polymer with Mixed Coordination Provides Compact and Reactive Quantum Dots, J. Am. Chem. Soc., 137 (2015) 5438-5451.
DOI: 10.1021/jacs.5b00671
Google Scholar
[16]
H. Zhang, R. Liu, Y. Tan, W.H. Xie, H. Lei, H. -Y. Cheung, H. Sun, A FRET-based Ratiometric Fluorescent Probe for Nitroxyl Detection in Living Cells, ACS Appl. Mater. Interfaces, 7 (2015) 5438-5443.
DOI: 10.1021/am508987v
Google Scholar
[17]
C. Ding, A. Zhu, Y. Tian, Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging, Acc. Chem. Res., 47 (2014) 20-30.
DOI: 10.1021/ar400023s
Google Scholar
[18]
S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications, Chem. Soc. Rev., 44 (2015) 362-381.
Google Scholar
[19]
H. Li, Z. Kang, Y. Liu, S. -T. Lee, Carbon nanodots: synthesis, properties and applications, J. Mater. Chem., 22 (2012) 24230-24253.
Google Scholar
[20]
K. Hola, Y. Zhang, Y. Wang, E.P. Giannelis, R. Zboril, A.L. Rogach, Carbon dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics, Nano Today, 9 (2014) 590-603.
DOI: 10.1016/j.nantod.2014.09.004
Google Scholar
[21]
W. Wang, L. Cheng, W. Liu, Biological applications of carbon dots, Sci. China: Chem., 57 (2014) 522-539.
Google Scholar
[22]
X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications, Small, 11 (2015) 1620-1636.
DOI: 10.1002/smll.201402648
Google Scholar
[23]
A. Zhao, Z. Chen, C. Zhao, N. Gao, J. Ren, X. Qu, Recent advances in bioapplications of C-dots, Carbon, 85 (2015) 309-327.
DOI: 10.1016/j.carbon.2014.12.045
Google Scholar
[24]
I. Costas-Mora, V. Romero, I. Lavilla, C. Bendicho, In Situ Building of a Nanoprobe Based on Fluorescent Carbon Dots for Methylmercury Detection, Anal. Chem., 86 (2014) 4536-4543.
DOI: 10.1021/ac500517h
Google Scholar
[25]
Y. Kim, G. Jang, T.S. Lee, New Fluorescent Metal-Ion Detection Using a Paper-Based Sensor Strip Containing Tethered Rhodamine Carbon Nanodots, ACS Appl. Mater. Interfaces, 7 (2015) 15649-15657.
DOI: 10.1021/acsami.5b04724
Google Scholar
[26]
J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, G. Zheng, Carbon Nanodots Featuring Efficient FRET for Real-Time Monitoring of Drug Delivery and Two-Photon Imaging, Adv. Mater., 25 (2013) 6569-6574.
DOI: 10.1002/adma.201303124
Google Scholar
[27]
F. Du, Y. Min, F. Zeng, C. Yu, S. Wu, A Targeted and FRET-Based Ratiometric Fluorescent Nanoprobe for Imaging Mitochondrial Hydrogen Peroxide in Living Cells, Small, 10 (2014) 964-972.
DOI: 10.1002/smll.201302036
Google Scholar
[28]
S. Li, Y. Li, J. Cao, J. Zhu, L. Fan, X. Li, Sulfur-Doped Graphene Quantum Dots as a Novel Fluorescent Probe for Highly Selective and Sensitive Detection of Fe3+, Anal. Chem., 86 (2014) 10201-10207.
DOI: 10.1021/ac503183y
Google Scholar
[29]
E. Bozkurt, M. Arık, Y. Onganer, A novel system for Fe3+ ion detection based on fluorescence resonance energy transfer, Sens. Actuators, B, 221 (2015) 136-147.
DOI: 10.1016/j.snb.2015.06.097
Google Scholar
[30]
J. -c. Qin, Z. -y. Yang, G. -q. Wang, A novel ratiometric fluorescent probe for detection of Fe3+ by rhodamine–quinoline conjugate, J. Photochem. Photobiol., A, 310 (2015) 122-127.
DOI: 10.1016/j.jphotochem.2015.05.010
Google Scholar
[31]
H. Liu, Z. He, L. -P. Jiang, J. -J. Zhu, Microwave-Assisted Synthesis of Wavelength-Tunable Photoluminescent Carbon Nanodots and Their Potential Applications, ACS Appl. Mater. Interfaces, (2015).
DOI: 10.1021/am508994w
Google Scholar
[32]
B. Osman, E.T. Özer, E. Demirbel, Ş. Güçer, N. Beşirli, Synthesis and characterization of L-tryptophan containing microbeads for removal of dimethyl phthalate from aqueous phase, Sep. Purif. Technol., 109 (2013) 40-47.
DOI: 10.1016/j.seppur.2013.02.025
Google Scholar
[33]
Y. Guo, Z. Wang, H. Shao, X. Jiang, Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions, Carbon, 52(2013) 583-589.
DOI: 10.1016/j.carbon.2012.10.028
Google Scholar
[34]
Y. -Q. Dang, Q. Li, K. Wang, Y. Wu, L. Lian, B. Zou, Hydrostatic Pressure Effects on the Fluorescence and FRET Behavior of Cy3-Labeled Phycocyanin System, J. Phys. Chem. B, 116(2012) 11010-11016.
DOI: 10.1021/jp306466j
Google Scholar
[35]
Y. -Q. Dang, H. -W. Li, B. Wang, L. Li, Y. Wu, Selective Detection of Trace Cr3+ in Aqueous Solution by Using 5, 5'-Dithiobis (2-Nitrobenzoic acid)-Modified Gold Nanoparticles, ACS Appl. Mater. Interfaces, 1 (2009) 1533-1538.
DOI: 10.1021/am9001953
Google Scholar