A Mini-Review on the Progress of Spherical Bacterial Cellulose Production

Article Preview

Abstract:

Bacterial cellulose (BC) is a polymer produced by some bacteria and it is highly pure when compared to plant cellulose. Its structure and properties are unique, which makes it a material of a large commercial interest due to its broad potential of applications. The biosynthesis of BC may be carried out in two ways either static or agitated culture. Static culture usually generates BC membranes whereas agitated tends to produce spherical shapes. The production in agitated culture often enables an increase of yield for cellulose production. However, it provides a material with lower mechanical properties compared to static culture. The processing parameters and the phenomena governing the formation of BC in agitated cultivation have not fully established. A greater understanding of the phenomena and parameters inherent in the production of BC in agitated culture is necessary to achieve a technological progress. Some limitations concerning molecular weight control and BC structure made in agitated culture can improve with a better understanding of the culture conditions and the biosynthesis evolution. The ex-situ or in-situ insertion of additives may be performed to increase some specific properties of BC over agitated culture. Thus, the principal objective of this work is to discuss and provide a broad literature review on the techniques of BC production by agitated culture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-154

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev., 40 (2011) 3941-3994.

DOI: 10.1039/c0cs00108b

Google Scholar

[2] D. Klemm, D. Schumann, U. Udhardt, S. Marsch, Bacterial synthesized cellulose – artificial blood vessels for microsurgery, Prog. Polym. Sci., 26 (2001) 1561-1603.

DOI: 10.1016/s0079-6700(01)00021-1

Google Scholar

[3] W. Czaja, A. Krystynowicz, S. Bielecki, J. R. M. Brown, Microbial cellulose - the natural, Biomaterials, 27 (2) (2006) 145-151.

DOI: 10.1016/j.biomaterials.2005.07.035

Google Scholar

[4] A. J. Brown, An acetic ferment which forms cellulose, J. Chem. Soc., 49 (1886) 432-439.

DOI: 10.1039/ct8864900432

Google Scholar

[5] Y. Yamada, P. Yukphan, H. T. L. Vu, Y. Muramatsu, D. Ochaikul, S. Tanasupawat, Y. Nakagawa, Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J. Gen. Appl. Microbiol., 58 (2012) 397-404.

DOI: 10.2323/jgam.58.397

Google Scholar

[6] D. Klemm, B. Heublein, H. Fink, A. Bohn, Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angew. Chem., 44 (2005) 3358-3393.

DOI: 10.1002/anie.200460587

Google Scholar

[7] Y. Chao, T. Ishida, Y. Sugano, M. Shoda, Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor, Biotechnol. Bioeng., 68 (3) (2000) 345-352.

DOI: 10.1002/(sici)1097-0290(20000505)68:3<345::aid-bit13>3.0.co;2-m

Google Scholar

[8] P. Ross, R. Mayer, M. Benziman, Cellulose Biosynthesis and Function in Bacteria, Microbiol. Rev., 55 (1) (1991) 35-58.

DOI: 10.1128/mr.55.1.35-58.1991

Google Scholar

[9] D. O. S. Recouvreux, C. R. Rambo, F. V. Berti, C. A. Carminatti, R.V. Antônio, L. M. Porto, Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration, Mater. Sci. Eng., C, 31 (2011) 151-157.

DOI: 10.1016/j.msec.2010.08.004

Google Scholar

[10] Y. Li, C. Tian, H. Tian, J. Zhang, X. He, W. Ping, H. Lei, Improvement of Bacterial Cellulose production by Acetobacter xylinum DSMZ-2004 on poor quality horticultural substrates using the Taguchi Method for media optimization. Part I, Cellulose Chem. Technol., 47 (1-2) (2013).

Google Scholar

[11] I. M. Saxena, K. Kudlicka, K. Okuda, R. M. Jr. Brown, Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization, J. Bacteriol., 176 (18) (1994) 5735-5752.

DOI: 10.1128/jb.176.18.5735-5752.1994

Google Scholar

[12] F. Esa, M. S. Tasirin, A. N. Rahman, Overview of Bacterial Cellulose Production and Application, Agric. Agric. Sci. Procedia, 2 (2014) 113-119.

DOI: 10.1016/j.aaspro.2014.11.017

Google Scholar

[13] W. Czaja, D. Romanovicz, R. M. Jr. Brown, Structural investigations of microbial cellulose produced in stationary and agitated culture, Cellulose, 11 (2004) 403-411.

DOI: 10.1023/b:cell.0000046412.11983.61

Google Scholar

[14] T. J. Bootten, P. J. Harris, L. D. Melton, R. H. Newman, WAXS and 13C NMR study of Gluconoacetobacter xylinus cellulose in composites with tamarind xyloglucan, Carbohydr. Res., 343 (2) (2008) 221-229.

DOI: 10.1016/j.carres.2007.11.008

Google Scholar

[15] W. Czaja, D. J. Young, M. Kawecki, R. M. Jr. Brown, The future prospects of microbial cellulose in biomedical applications, Biomacromolecules, 8 (1) (2007) 1-12.

DOI: 10.1021/bm060620d

Google Scholar

[16] Y. Hu, J. M. Catchmark, J. Vogler, Factors Impacting the Formation of Sphere-Like Bacterial Cellulose, Biomacromolecules, 14 (10) (2013) 3444-3452.

DOI: 10.1021/bm400744a

Google Scholar

[17] S. Hestrin, M. Schramm, Synthesis of cellulose by Acetobacter xylinum 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose, Biochem J., 58 (1954) 345-352.

DOI: 10.1042/bj0580345

Google Scholar

[18] F. Yoshinaga, N. Tonouchi, K. Watanabe, Research progress in the production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material, Biosci., Biotechnol., Biochem., 61 (2) (1997) 219-224.

DOI: 10.1271/bbb.61.219

Google Scholar

[19] T. Tsuchida, F. Yoshinaga, Production of bacterial cellulose by agitation culture systems, Pure & Appl. Chem., 69 (11) (1997) 2453-2458.

DOI: 10.1351/pac199769112453

Google Scholar

[20] Y. Hu, J. M. Catchmark, Formation and characterization of sphere like bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain, Biomacromolecules, 11 (7) (2010) 1727-1734.

DOI: 10.1021/bm100060v

Google Scholar

[21] K. Cheng, J. M. Catchmark, A. Demirci, Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of the material property, Cellulose, 16 (2009) 1033-1045.

DOI: 10.1007/s10570-009-9346-5

Google Scholar

[22] A. Seto, Y. Saito, M. Matsushige, H. Kobayashi, Y. Sasaki, N. Tonouchi, T. Tsuchida, F. Yoshinaga, K. Ueda, T. Beppu, Effective cellulose production by a coculture of Gluconacetobacter xylinus and Lactobacillus mali, Appl. Microbiol. Biotechnol., (2006).

DOI: 10.1007/s00253-006-0515-2

Google Scholar

[23] J. Gu, J. M. Catchmark, Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly, Carbohydr. Polym., 88 (2012) 547-557.

DOI: 10.1016/j.carbpol.2011.12.040

Google Scholar

[24] H. Zhu, S. Jia, H. Yang, Y. Jia, L. Yan, J. Li, Preparation and application of bacterial cellulose sphere: a novel biomaterial, Biotechnol. Biotechnol. Equip., 25 (1) (2011) 2233-2236.

DOI: 10.5504/bbeq.2011.0010

Google Scholar

[25] A. Zywicka, D. Peitler, R. Rakoczy, M. Konopacki, M. Kordas, K. Fijałkowski, The effect of different agitation modes on bacterial cellulose synthesis by Gluconacetobacter xylinus strains, Acta Sci. Pol. Zootechnica, 14 (1) (2015) 137-150.

Google Scholar

[26] Sarkono, S. Moeljopawiro, B. Setiaji, L. Sembiring, Physico-chemical properties of bacterial cellulose produced by newly strain Gluconacetobacter xylinus ANG-29 in static and shaking fermentations, Biosci., Biotech. Res. Asia, 11 (3) (2014).

DOI: 10.13005/bbra/1514

Google Scholar

[27] N. Shah, M. Ul-Islam, W. A. Khattak, J. K. Park, Overview of bacterial cellulose composites: A multipurpose advanced material, Carbohydr. Polym., 98 (2013) 1585-1598.

DOI: 10.1016/j.carbpol.2013.08.018

Google Scholar

[28] H. Zhu, S. Jia, T. Wan, Y. Jia, H. Yang, J. Li, L. Yan, C. Zhong, Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions, Carbohydr. Polym., 86 (2011) 1558-1564.

DOI: 10.1016/j.carbpol.2011.06.061

Google Scholar