[1]
R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev., 40 (2011) 3941-3994.
DOI: 10.1039/c0cs00108b
Google Scholar
[2]
D. Klemm, D. Schumann, U. Udhardt, S. Marsch, Bacterial synthesized cellulose – artificial blood vessels for microsurgery, Prog. Polym. Sci., 26 (2001) 1561-1603.
DOI: 10.1016/s0079-6700(01)00021-1
Google Scholar
[3]
W. Czaja, A. Krystynowicz, S. Bielecki, J. R. M. Brown, Microbial cellulose - the natural, Biomaterials, 27 (2) (2006) 145-151.
DOI: 10.1016/j.biomaterials.2005.07.035
Google Scholar
[4]
A. J. Brown, An acetic ferment which forms cellulose, J. Chem. Soc., 49 (1886) 432-439.
DOI: 10.1039/ct8864900432
Google Scholar
[5]
Y. Yamada, P. Yukphan, H. T. L. Vu, Y. Muramatsu, D. Ochaikul, S. Tanasupawat, Y. Nakagawa, Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J. Gen. Appl. Microbiol., 58 (2012) 397-404.
DOI: 10.2323/jgam.58.397
Google Scholar
[6]
D. Klemm, B. Heublein, H. Fink, A. Bohn, Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angew. Chem., 44 (2005) 3358-3393.
DOI: 10.1002/anie.200460587
Google Scholar
[7]
Y. Chao, T. Ishida, Y. Sugano, M. Shoda, Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor, Biotechnol. Bioeng., 68 (3) (2000) 345-352.
DOI: 10.1002/(sici)1097-0290(20000505)68:3<345::aid-bit13>3.0.co;2-m
Google Scholar
[8]
P. Ross, R. Mayer, M. Benziman, Cellulose Biosynthesis and Function in Bacteria, Microbiol. Rev., 55 (1) (1991) 35-58.
DOI: 10.1128/mr.55.1.35-58.1991
Google Scholar
[9]
D. O. S. Recouvreux, C. R. Rambo, F. V. Berti, C. A. Carminatti, R.V. Antônio, L. M. Porto, Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration, Mater. Sci. Eng., C, 31 (2011) 151-157.
DOI: 10.1016/j.msec.2010.08.004
Google Scholar
[10]
Y. Li, C. Tian, H. Tian, J. Zhang, X. He, W. Ping, H. Lei, Improvement of Bacterial Cellulose production by Acetobacter xylinum DSMZ-2004 on poor quality horticultural substrates using the Taguchi Method for media optimization. Part I, Cellulose Chem. Technol., 47 (1-2) (2013).
Google Scholar
[11]
I. M. Saxena, K. Kudlicka, K. Okuda, R. M. Jr. Brown, Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization, J. Bacteriol., 176 (18) (1994) 5735-5752.
DOI: 10.1128/jb.176.18.5735-5752.1994
Google Scholar
[12]
F. Esa, M. S. Tasirin, A. N. Rahman, Overview of Bacterial Cellulose Production and Application, Agric. Agric. Sci. Procedia, 2 (2014) 113-119.
DOI: 10.1016/j.aaspro.2014.11.017
Google Scholar
[13]
W. Czaja, D. Romanovicz, R. M. Jr. Brown, Structural investigations of microbial cellulose produced in stationary and agitated culture, Cellulose, 11 (2004) 403-411.
DOI: 10.1023/b:cell.0000046412.11983.61
Google Scholar
[14]
T. J. Bootten, P. J. Harris, L. D. Melton, R. H. Newman, WAXS and 13C NMR study of Gluconoacetobacter xylinus cellulose in composites with tamarind xyloglucan, Carbohydr. Res., 343 (2) (2008) 221-229.
DOI: 10.1016/j.carres.2007.11.008
Google Scholar
[15]
W. Czaja, D. J. Young, M. Kawecki, R. M. Jr. Brown, The future prospects of microbial cellulose in biomedical applications, Biomacromolecules, 8 (1) (2007) 1-12.
DOI: 10.1021/bm060620d
Google Scholar
[16]
Y. Hu, J. M. Catchmark, J. Vogler, Factors Impacting the Formation of Sphere-Like Bacterial Cellulose, Biomacromolecules, 14 (10) (2013) 3444-3452.
DOI: 10.1021/bm400744a
Google Scholar
[17]
S. Hestrin, M. Schramm, Synthesis of cellulose by Acetobacter xylinum 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose, Biochem J., 58 (1954) 345-352.
DOI: 10.1042/bj0580345
Google Scholar
[18]
F. Yoshinaga, N. Tonouchi, K. Watanabe, Research progress in the production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material, Biosci., Biotechnol., Biochem., 61 (2) (1997) 219-224.
DOI: 10.1271/bbb.61.219
Google Scholar
[19]
T. Tsuchida, F. Yoshinaga, Production of bacterial cellulose by agitation culture systems, Pure & Appl. Chem., 69 (11) (1997) 2453-2458.
DOI: 10.1351/pac199769112453
Google Scholar
[20]
Y. Hu, J. M. Catchmark, Formation and characterization of sphere like bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain, Biomacromolecules, 11 (7) (2010) 1727-1734.
DOI: 10.1021/bm100060v
Google Scholar
[21]
K. Cheng, J. M. Catchmark, A. Demirci, Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of the material property, Cellulose, 16 (2009) 1033-1045.
DOI: 10.1007/s10570-009-9346-5
Google Scholar
[22]
A. Seto, Y. Saito, M. Matsushige, H. Kobayashi, Y. Sasaki, N. Tonouchi, T. Tsuchida, F. Yoshinaga, K. Ueda, T. Beppu, Effective cellulose production by a coculture of Gluconacetobacter xylinus and Lactobacillus mali, Appl. Microbiol. Biotechnol., (2006).
DOI: 10.1007/s00253-006-0515-2
Google Scholar
[23]
J. Gu, J. M. Catchmark, Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly, Carbohydr. Polym., 88 (2012) 547-557.
DOI: 10.1016/j.carbpol.2011.12.040
Google Scholar
[24]
H. Zhu, S. Jia, H. Yang, Y. Jia, L. Yan, J. Li, Preparation and application of bacterial cellulose sphere: a novel biomaterial, Biotechnol. Biotechnol. Equip., 25 (1) (2011) 2233-2236.
DOI: 10.5504/bbeq.2011.0010
Google Scholar
[25]
A. Zywicka, D. Peitler, R. Rakoczy, M. Konopacki, M. Kordas, K. Fijałkowski, The effect of different agitation modes on bacterial cellulose synthesis by Gluconacetobacter xylinus strains, Acta Sci. Pol. Zootechnica, 14 (1) (2015) 137-150.
Google Scholar
[26]
Sarkono, S. Moeljopawiro, B. Setiaji, L. Sembiring, Physico-chemical properties of bacterial cellulose produced by newly strain Gluconacetobacter xylinus ANG-29 in static and shaking fermentations, Biosci., Biotech. Res. Asia, 11 (3) (2014).
DOI: 10.13005/bbra/1514
Google Scholar
[27]
N. Shah, M. Ul-Islam, W. A. Khattak, J. K. Park, Overview of bacterial cellulose composites: A multipurpose advanced material, Carbohydr. Polym., 98 (2013) 1585-1598.
DOI: 10.1016/j.carbpol.2013.08.018
Google Scholar
[28]
H. Zhu, S. Jia, T. Wan, Y. Jia, H. Yang, J. Li, L. Yan, C. Zhong, Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions, Carbohydr. Polym., 86 (2011) 1558-1564.
DOI: 10.1016/j.carbpol.2011.06.061
Google Scholar