[1]
L.Z. Zhong, J.F. Li, Y. Gao, W.Q. Cao, P.C. Zhang, L.Z. Zhong and X.F. Lai, Preparation and characterisation of calcium citrate wires, Micro & Nano Letters. 10 (2015) 419-421.
DOI: 10.1049/mnl.2015.0090
Google Scholar
[2]
W. Zhang, W. Wang, Q.Y. Chen, Z.Q. Lin, S.W. Cheng, D.Q. Kou, X.Z. Ying, Y. Shen, X.J. Cheng, P.F. Nie, F.A. Rompis, H. Huang, H. Zhang , Z.L. Mu and L Peng, Effect of calcium citrate on bone integration in a rabbit femur defect model, Asian Pacific Journal of Tropical Medicine. 5 (2012).
DOI: 10.1016/s1995-7645(12)60045-5
Google Scholar
[3]
G.Q. Liu, H.F. Zhou, J. Zhang, Z.M. Yan, M.X. Duan and Y.F. Long, Preparation and characterisation of a soy lecithin-based self-microemulsifying drug delivery system of resveratrol, Micro & Nano Letters. 9 (2014) 561-565.
DOI: 10.1049/mnl.2014.0015
Google Scholar
[4]
E.Y. Choi, H.J. Kim, J.S. Han. Anti-inflammatory effects of calcium citrate in RAW 264. 7 cells via suppression of NF-κB activation, Environmental toxicology and pharmacology. 39 (2015) 27-34.
DOI: 10.1016/j.etap.2014.11.002
Google Scholar
[5]
Y.Y. Hu, A. Rawal, K. Schmidt-Rohr. Strongly bound citrate stabilizes the apatite nanocrystals in bone, Proceedings of the National Academy of Sciences. 107 (2010) 22425-22429.
DOI: 10.1073/pnas.1009219107
Google Scholar
[6]
X. Zeng, M.H. Ma, Technologic research on transforming calcium carbonate in eggshell to calcium citrate, Scientia Agricultura Sinica. 43 (2010) 1031-1040.
Google Scholar
[7]
W.B. Wang, W.Q. Zhao, H. Sun, Study on preparation of calcium citrate from egg shell, Applied Chemical Industry. 41(2012) 557-558.
Google Scholar
[8]
C.H. Wang, X.T. Zhang, B. Yuan, C.L. Shao and Y. C Liu, Simple route to self-assembled BiOCl networks photocatalyst from nanosheet withexposed (001) facet, Micro & Nano Letters. 7 (2012) 152-154.
DOI: 10.1049/mnl.2011.0668
Google Scholar
[9]
P. Liu, Q.L. Hao, X.F. Xia, L. Lu, W. Lei and X. Wang, 3D hierarchical mesoporous flowerlike cobalt Oxide nanomaterials: Controllable Synthesis and Electrochemical Properties, The Journal of Physical Chemistry C. 119 (2015) 8537-8546.
DOI: 10.1021/acs.jpcc.5b01315
Google Scholar
[10]
X.J. Lin, Y.S. Shang, L.Y. Li and A. S Yu, Sea-Urchin-like Cobalt Oxide Grown on Nickel Foam as a Carbon-Free Electrode for Lithium–Oxygen Batteries, ACS Sustainable Chemistry & Engineering. 3 (2015) 903-908.
DOI: 10.1021/acssuschemeng.5b00012
Google Scholar
[11]
S. Liu, X.M. Yin, L.B. Chen, Q.H. Li and T.H. Wang, Synthesis of self-assembled 3D flowerlike SnS2 nanostructures with enhanced lithium ion storage property, Solid State Sciences, 12 (2010) 712-718.
DOI: 10.1016/j.solidstatesciences.2010.02.033
Google Scholar
[12]
H. Chen, Q.W. Wang, C.L. Kou, Y.M. Sui, Y. Zeng and F. Du, One-pot synthesis and improved sensing properties of hierarchical flowerlike SnO2 assembled from sheet and ultra-thin rod subunits, Sensors and Actuators B: Chemical. 194 (2014) 447-453.
DOI: 10.1016/j.snb.2013.12.119
Google Scholar
[13]
H.Y. Duan, F.G. Li, W. Wu and J. Wang, Synthesis and magnetic properties of nickel three-dimensional superlattice structure, Micro & Nano Letters. 8 (2013) 264-266.
DOI: 10.1049/mnl.2012.0945
Google Scholar
[14]
S. Tan, Q.X. Wu, J. Wang, X.L. Liu, K.K. Sui, X.Y. Deng, H.F. Wang and M.H. Wu, Dynamic self-assembly synthesis and controlled release as drug vehicles of porous hollow silica nanoparticles, Microporous and Mesoporous Materials. 142 (2011).
DOI: 10.1016/j.micromeso.2011.01.004
Google Scholar
[15]
T. Zhang, Y. M Zhou, Y.J. Wang, L.P. Zhang, H.Y. Wang and X. Wu, Fabrication of hierarchical nanostructured BSA/ZnO hybrid nanoflowers by a self-assembly process, Materials Letters. 128 (2014) 227-230.
DOI: 10.1016/j.matlet.2014.04.166
Google Scholar
[16]
J.F. Li, G.Z. Lu, H.F. Li, Y.Q. Wang, Y. Guo and Y.L. Guo, Facile synthesis of 3D flowerlike CeO2 microspheres under mild condition with high catalytic performance for CO oxidation, Journal of Colloid and Interface Science. 360 (2011) 93-99.
DOI: 10.1016/j.jcis.2011.04.052
Google Scholar
[17]
X. Li, X. F Fang, R.Z. Pang, J.S. Li, X.Y. Sun, J.Y. Shen, W.Q. Han, L.J. Wang, Self-assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling, Journal of Membrane Science. 467 (2014) 226-235.
DOI: 10.1016/j.memsci.2014.05.036
Google Scholar
[18]
B. Xu, J. Wang, H.B. Yu and H. Gao, Large-scale synthesis of hierarchical flowerlike boehmite architectures, Journal of Environmental Sciences. 23 (2011) 49-52.
DOI: 10.1016/s1001-0742(11)61076-0
Google Scholar
[19]
T.W. Min, T. J. Chow, TiO2 particles prepared by size control self-assembly and their usage on dye-sensitized solar cell, Microporous and Mesoporous Materials. 196 (2014) 354-358.
DOI: 10.1016/j.micromeso.2014.05.035
Google Scholar
[20]
M. Hod, C. Dobbrow, M. Vaidyanathan, D. Guin, L. Belkoura, R. Strey, M. Gottlieb and A.M. Schmidt, Controlling the self-assembly of magnetic nanoparticles by competing dipolar and isotropic particle interactions, Journal of Colloid and Interface Science. 436 (2014).
DOI: 10.1016/j.jcis.2014.08.024
Google Scholar
[21]
L.L. Ma, J.L. Li, H.Z. Sun, M.Q. Qiu, J.B. Wang, J.Y. Chen and Y. Yu, Self-assembled Cu2O flowerlike architecture: Polyol synthesis, photocatalytic activity and stability under simulated solar light, Materials Research Bulletin. 45 (2010).
DOI: 10.1016/j.materresbull.2010.04.009
Google Scholar
[22]
R. Gautam, S.M.S. Chauhan, Surfactant assisted self-assembly of zinc 5, 10-bis (4-pyridyl)-15, 20-bis (4-octadecyloxyphenyl) porphyrin into supramolecular nanoarchitectures, Materials Science and Engineering: C. 43 (2014) 447-457.
DOI: 10.1016/j.msec.2014.07.017
Google Scholar
[23]
T. Zhang, Y.M. Zhou, Y.J. Wang, L.P. Zhang, H.Y. Wang and X. Wu, Fabrication of hierarchical nanostructured BSA/ZnO hybrid nanoflowers by a self-assembly process, Materials Letters. 128 (2014) 227-230.
DOI: 10.1016/j.matlet.2014.04.166
Google Scholar
[24]
F. Duan, Y. Zheng, L. Liu, M.Q. Chen and Y. Xie, Synthesis and photocatalytic behaviour of 3D flowerlike bismuth oxide formate architectures, Materials Letters. 64 (2010) 1566-1569.
DOI: 10.1016/j.matlet.2010.04.046
Google Scholar
[25]
J.F. Li, G.Z. Lu, Y.Q. Wang, Y. Guo and Y.L. Guo, A high activity photocatalyst of hierarchical 3D flowerlike ZnO microspheres: Synthesis, characterization and catalytic activity, Journal of Colloid and Interface Science, 377 (2012) 191-196.
DOI: 10.1016/j.jcis.2012.04.008
Google Scholar
[26]
Z.H. Xue, B.B. Hu, S.X. Dai, and Z.L. Du, Crystallization and self-assembly of flowerlike superstructures of calcium carbonate regulated by pepsin Langmuir monolayers, Materials Chemistry and Physics. 136 (2012) 771-777.
DOI: 10.1016/j.matchemphys.2012.07.054
Google Scholar
[27]
A.A.M. Seham, Thermal decomposition of calcium citrate tetrahydrate, Thermochimica Acta. 233 (1994) 243-256.
DOI: 10.1016/0040-6031(94)85118-2
Google Scholar
[28]
C. Krittanut, V. Alisa, M.M. John, P. Birgit, K. Sita and K. Eakalak, Impact of nanoscale zero valent iron on bacteria is growth phase dependent, Chemosphere, 144 (2016) 352-359.
DOI: 10.1016/j.chemosphere.2015.09.025
Google Scholar
[29]
X.Y. Jin, Z.C. Zhuang, B. Yu, Z.X. Chen and Z.L. Chen, Functional chitosan-stabilized nanoscale zero-valent iron used to remove acid fuchsine with the assistance of ultrasound, Carbohydrate Polymers. 136 (2016) 1085-1090.
DOI: 10.1016/j.carbpol.2015.10.002
Google Scholar