Controlling the Size of Interior Core of Silicon Nanowires

Article Preview

Abstract:

As the physical and electrical properties of silicon nanowires (SiNWs) are determined by their dimension, it is necessary to control their dimension to integrate them in a device. SiNWs were synthesized via Vapor-Liquid-Solid (VLS) mechanism in hot-wire chemical vapor process (HWCVP) technique using silane as a Si source and Sn as a catalyst. Different sizes of nano-template have been made by depositing of different amount of Sn using thermal evaporation method. The size of nano-template is found to be increased with the quantity of Sn. The diameter of resulted SiNWs depends on the size of the nano-template and it increases with the nano-template size. However, the diameter of SiNWs is found to be much larger than the used nano-template which is due to the deposition of silicon film on the sidewalls of the growing SiNWs. It is demonstrated here that the diameter of the interior core of SiNWs can be controlled desirable by adjusting the size of the nano-template.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-198

Citation:

Online since:

January 2017

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yi Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, High Performance Silicon Nanowire Field Effect Transistors, Nano Lett. 3 (2003) 149−152.

DOI: 10.1021/nl025875l

Google Scholar

[2] Y. Dong, G. Yu, M. C. Mc Alpine, W. Lu, Charles M. Lieber, Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches, Nano Lett. 8 (2008) 386-391.

DOI: 10.1021/nl073224p

Google Scholar

[3] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, NATURE-451 (2008) 163-167.

DOI: 10.1038/nature06381

Google Scholar

[4] B. Tian, X. Zheng, T. J. Kempa,Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, NATURE 449 (2007) 885-889.

DOI: 10.1038/nature06181

Google Scholar

[5] J. W. Choi, J. M. Donough, S. Jeong, J. S. Yoo, C. K. Chan, Y. Cui, Stepwise nanopore evolution in one-dimensional nanostructures, Nano Lett. 10 (2010) 1409-1413.

DOI: 10.1021/nl100258p

Google Scholar

[6] F. Thissandier, A. L. Comte, O. Crosnier, P. Gentile, G. Bidan, E. Hadji, T. Brousse, S. Sadki, Highly doped silicon nanowires based electrodes for micro electrochemical capacitor applications, Electrochemistry Communications 25 (2012) 109–111.

DOI: 10.1016/j.elecom.2012.09.019

Google Scholar

[7] Nagsen P. Meshram, A. Kumbhar, R.O. Dusane, Silicon nanowire growth on glass substrates using hot wire chemical vapor deposition, Thin Solid Films 519 (2011) 4609–4612.

DOI: 10.1016/j.tsf.2011.01.304

Google Scholar

[8] S. K. Chong, B. T. Goh, Z. Aspanut, M. R. Muhamad, C. F. Dee, S. A. Rahman, Synthesis of indium-catalyzed Si nanowires by hot-wire chemical vapor deposition, Materials Letters 65 (2011) 2452–2454.

DOI: 10.1016/j.matlet.2011.04.100

Google Scholar

[9] R. S. Wagner, W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett. 4 (1964) 89-90.

DOI: 10.1063/1.1753975

Google Scholar

[10] S. Misra, L. Yu, W. Chen. P. R. i Cabarrocas, Wetting Layer: The Key Player in Plasma-Assisted Silicon Nanowire Growth Mediated by Tin, J. Phys. Chem. C 117 (2013) 17786 −17790.

DOI: 10.1021/jp403063d

Google Scholar

[11] L. F. Cui, R. Ruffo, C. K. Chan, H. Peng, Y. Cui, Crystalline-Amorphous Core –Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes, Nano Lett. 9 (2009) 491-495.

DOI: 10.1021/nl8036323

Google Scholar

[12] M. M. Adachi, M. P. Anantram, K. S. Karim, Optical Properties of Crystalline Amorphous Core -Shell Silicon Nanowires, Nano Lett. 10 (2010) 4093–4098.

DOI: 10.1021/nl102183x

Google Scholar

[13] S. K. Chong, B. T. Goh, Z. Aspanut, M. R. Muhamad, C. F. Dee, S. A. Rahman: Radial growth of slanting-columnar nanocrystalline Si on Si nanowires, Chemical Physics Letters 515 (2011) 68–71.

DOI: 10.1016/j.cplett.2011.08.046

Google Scholar

[14] A. Soam, N. Arya, A. Kumbhar, and R. Dusane, Controlling the shell microstructure in a low-temperature-grown SiNWs and correlating it to the performance of the SiNWs-based micro-supercapacitor, Applied Nanoscience (2016) 1-7.

DOI: 10.1007/s13204-016-0533-z

Google Scholar

[15] A. Soam and R. O. Dusane, Charge storage properties of SiNWs grown by hot-wire chemical vapor process technique as electrodes in electrochemical capacitors, International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (2013).

DOI: 10.1109/icanmeet.2013.6609333

Google Scholar

[16] Y. Y. Wei, G. Eres, V. I. Merkulov, D. H. Lowndes, Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition, Applied Physics Letters 78 (2001) 1394-1396.

DOI: 10.1063/1.1354658

Google Scholar