Synthesis of Calcium-Deficient Carbonated Hydroxyapatite as Promising Sorbent for Removal of Lead Ions

Article Preview

Abstract:

This study is devoted to the synthesis of calcium-deficient carbonated hydroxyapatite and the modeling study of its sorption capacity for heavy metal ions on the example of Pb2+. Sorption of Pb2+ ions was investigated in physiological conditions. It was found that the synthesized calcium-deficient carbonated hydroxyapatite is nanosized and has an excellent sorption capacity for Pb2+ ions – up to 588 mg/g. Characterization of the solid particles after sorption by XRD and FTIR methods showed that in the sorption process, a new crystal phase of hydroxypyromorphite was formed. Also, the sharp decrease of pH in the initial period when the material is exposed to the heavy metal solution was explained. This effect is attributed to the fast formation of the surface complex =POPb+, followed by the dissociation of structural water molecules in the surface layer of the material under the influence of the adsorbed lead ions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-133

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Suchanek, M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, Journal of Materials Research 13 (1998) 94-117.

DOI: 10.1557/jmr.1998.0015

Google Scholar

[2] S.V. Dorozhkin, Calcium orthophosphates in nature, biology and medicine, Materials 2 (2009) 399-498.

DOI: 10.3390/ma2020399

Google Scholar

[3] Erzsébet-Sára Bogya, Réka Barabás, Alexandra Csavdári, Valentina Dejeu, Hydroxyapatite modified with silica used for sorption of copper(II), Chemiscal paper 63 (2009) 568-573.

DOI: 10.2478/s11696-009-0059-x

Google Scholar

[4] N. Moayyeri, K. Saeb, E. Biazar, Removal of heavy metals (lead, cadmium, zinc, nickel and iron) from water by bio-ceramic absorbers of hydroxyapatite microparticles, Journal of Marine Science and Engineering 3 (2013) 13-16.

Google Scholar

[5] L. Donga, Z. Zhua, Y. Qiub, J. Zhaoa, Removal of lead from aqueous solution by hydroxyapatite magnetite composite adsorbent, Chemical Engineering Journal 165 (2010) 827-834.

DOI: 10.1016/j.cej.2010.10.027

Google Scholar

[6] S. Corami, Mignardi, V. Ferrini, Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite, Journal of Hazardous Materials 146 (2007) 164-170.

DOI: 10.1016/j.jhazmat.2006.12.003

Google Scholar

[7] E. I. Abdel-Gawad, S. A. Awwad, In-vivo and in-vitro prediction of the efficiency of Nano-Synthesized Material in Removal of Lead Nitrate Toxicity, Journal of American Science 7 (2011) 105-119.

Google Scholar

[8] Y. Takeuchi, T. Susuki, H. A. Arai, Study of equilibrium and mass transfer in processes for removal of heavy metal ions by hydroxyapatite, Journal of Chemical Engineering of Japan 21 (1998) 98-100.

DOI: 10.1252/jcej.21.98

Google Scholar

[9] E. Mavropoulos, A. M. Rossi, A. M. Costa, Studies on the mechanisms of lead immobilization by hydroxyapatite, Environmental Science and Technology 36 (2002) 1625-1629.

DOI: 10.1021/es0155938

Google Scholar

[10] Q. Y. Ma, S. J. Traina, T. J. Logan, J. A. Ryan, In situ lead immobilization by apatite, Environmental Science and Technology 27 (1993) 1803-1810.

DOI: 10.1021/es00046a007

Google Scholar

[11] A. Corami, S. Mignardi, V. Ferrini, Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite, Journal of Colloid and Interface Science 317 (2008) 402-408.

DOI: 10.1016/j.jcis.2007.09.075

Google Scholar

[12] M. Lombardi, P. Palmero, K. Haberko, W. Pyda, L. Montanaro, Processing of a natural hydroxyapatite powder: from powder optimization to porous bodies development, Journal of the European Ceramic Society 31 (2011) 2513–2518.

DOI: 10.1016/j.jeurceramsoc.2011.02.017

Google Scholar

[13] A. Kolmas, A. Jaklewicz, Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: the efect on physicochemical properties, Journal of Molecular Structure 987 (2011) 40-50.

DOI: 10.1016/j.molstruc.2010.11.058

Google Scholar

[14] S. Gomes, J. M. Nedelec, E. Jallot, D. Sheptyakov, G. Renaudin, Silicon location in silicate-substituted calcium phosphate ceramics determined by neutron difraction, Crystal Growth and Design, 11 (2011) 4017–4026.

DOI: 10.1021/cg200587s

Google Scholar

[15] A. Nakahira, C. Karatani, S. Nishida, Evaluation of Cadmium Removal in Solution Using Various Hydroxyapatite and Cattle Bone, Phosphorus Research Bulletin 17 (2004) 148-152.

DOI: 10.3363/prb1992.17.0_148

Google Scholar

[16] T. Nakahira, T. Okajima, S. Honma, I. Yoshioka, Arsenic Removal by Hydroxyapatite-Based Ceramics, Chemistry Letters 35 ( 2006) 856-857. doi: 10. 1246/cl. 2006. 85.

DOI: 10.1246/cl.2006.856

Google Scholar

[17] R. Murugan, S. Ramakrishna, K. P. Rao, Nanoporous hydroxy-carbonate apatite scaffold made of natural bone, Materials Letters 60 (2006) 2844–2847.

DOI: 10.1016/j.matlet.2006.01.104

Google Scholar

[18] Y. Liu, H.Y. Xu, The study of adsorption of Cd2+ by phosphate rocks, ActaMiner. Sin. 3 (2001) 496–508.

Google Scholar

[19] M. Elena, M.R. Alexandre, M.C. Andea, Studies on themechanisms of lead immobilization by hydroxyapatite, Environ. Sci. Technol. 36 (2002) 1625–1629.

Google Scholar

[20] L. N. Herbert, M. Christine, B. N. Roberta, E.F. Stephen, J. T. Michael, Bone lead levels in adjudicated delinquents A case control study, Neurotoxicology and Teratology 24 (2002) 711-717.

DOI: 10.1016/s0892-0362(02)00269-6

Google Scholar

[21] A. Sharma, V. Sharma, L. Kansal, Amelioration of lead-induced hepatotoxicity by Allium sativum extracts in Swiss albino mice, Libyan J. of Med. 5 (2010) 4621-4631.

DOI: 10.3402/ljm.v5i0.4621

Google Scholar

[22] E. K. Silbergeld, Facilitative mechanisms of lead as a carcinogen, Mut. Res. -Fund. and Mol, Mechanisms of Mutagenesis 533 (2003) 121-133.

DOI: 10.1016/j.mrfmmm.2003.07.010

Google Scholar

[23] A. Costescu, I. Pasuk, F. Ungureanu, Physico –chemical properties of nano -sized hexagonal hydroxyapatite powder synthesized by sol-gel, Digest Journal of Nanomaterials and Biostructures 5 (2010) 989–1000.

Google Scholar

[24] D. Predoi, R.V. Ghita, F. Ungureanu, C. C. Negrila, R.A. Vatasescu-Balcan, M. Costache, Characteristics of hydroxyapatite thin ilms, Journal of Optoelectronics and Advanced Materials 9 (2007) 3827–3831.

DOI: 10.1007/978-3-540-95930-4_11

Google Scholar

[25] A. Belatik, S. Hotchandani, R. Carpentier, H. A. Tajmir-Riahi, Locating the binding sites of Pb(II) ion with human and bovine serum albumins, PLoS ONE 7 (2012) 1-9.

DOI: 10.1371/journal.pone.0036723

Google Scholar

[26] N. Masakazu, N. Koudai, A. Kenji, Removal of Lead from Contaminated Soils with Chelating Agents, Materials Transactions 49 (2008) 2377-2382.

DOI: 10.2320/matertrans.m-mra2008825

Google Scholar

[27] S. Bailliez, A. Nzihou, A. Beche, G. Flamant, Removal of Lead (Pb) by Hydroxyapatite Sorbent, Institution of Chemical Engineers. Trans IChemE, Part B, Process Safety and Environmental Protection, 82 (2004) 175–180.

DOI: 10.1205/095758204322972816

Google Scholar

[28] Dexiang Liao, Wei Zheng , Xiaoming Li , Qi Yang , Xiu Yue , Liang Guo , Guangming Zeng, Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste, Journal of Hazardous Materials 177 (2010) 126–130.

DOI: 10.1016/j.jhazmat.2009.12.005

Google Scholar