[1]
W. Lee, R. Ji, U. Gösele, K. Nielius, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature Materials. 5 (2006) 741-747.
DOI: 10.1038/nmat1717
Google Scholar
[2]
Y. Song, L. F. Jiang, W. X. Qi, C. Liu, X.F. Zhu, H.B. Jia, High-filed anodization of aluminum in concentrated acid solutions and at higher temperatures, Journal of Electroanalytical Chemistry. 673 (2012) 24-31.
DOI: 10.1016/j.jelechem.2012.03.017
Google Scholar
[3]
C. Cheng, A. H. W. Ngan, Fast fabrication of self-ordered anodic porous alumina on oriented aluminum grains by high acid concentration and high temperature anodization, Nanotechnology. 24 (2013) 215602.
DOI: 10.1088/0957-4484/24/21/215602
Google Scholar
[4]
W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, U. Gösele, Structural engineering of nanoporous anodic aluminum oxide by pulse anodization of aluminum, Nat. Nano. 3 (2008) 234-239.
DOI: 10.1038/nnano.2008.54
Google Scholar
[5]
W. Lee, K. Jae-Cheon, Highly ordered porous alumina with tailor-made pore structures fabricated byplus anodization, Nanotechnology. 21 (2010) 485304.
DOI: 10.1088/0957-4484/21/48/485304
Google Scholar
[6]
Y. Li, Z. Y. Ling, S. S. Chen, X. Hu, X.H. He, Fabrication of novel porous anodic alumina membranes by two-step hard anodization, Nanotechnology. 19 (2008) 225604.
DOI: 10.1088/0957-4484/19/22/225604
Google Scholar
[7]
T. S. Kustandi, W. W. Loh, H. Gaoan, H.Y. Low, Wafer-scale near-perfect ordered porous alumina on substrates by step and flash imprint lithography, ACS nano. 4 (2010) 2561-2568.
DOI: 10.1021/nn1001744
Google Scholar
[8]
H. Asoh, K. Nishio, M. Nakao, T. Tamamura, H. Masuda, Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al, Journal of the Electrochemical Society. 148 (2001) B152-B156.
DOI: 10.1149/1.1355686
Google Scholar
[9]
F. Zhang, X. Liu, C. Pan, J. Zhu, Nano-porous anodic aluminum oxide membranes with 6-19 nm pore diameters formed by a low-potential anodizing process, Nanotechnology. 18 (2007) 345302.
DOI: 10.1088/0957-4484/18/34/345302
Google Scholar
[10]
L. Zaraska, G. D. Sulka, J. Szeremeta, M Jaslula, Porous anodic alumina formed by anodization of aluminum alloy(AA1050) and hjgh perity aluminum, Electrochimica Acta. 55 (2010) 4377-4386.
DOI: 10.1016/j.electacta.2009.12.054
Google Scholar
[11]
M. Gowtham, L. Eude, C. S. Cojocaru, B. Marquardt, H. J. Jeong, P. Legagneux, D. Pribat, Controlled fabrication of patterned lateral porous alumina memebranes, Nanotechnology. 19 (2008) 035303.
DOI: 10.1088/0957-4484/19/03/035303
Google Scholar
[12]
D. Losic, M. Lillo, D. J. Losic, Porous Alumina with Shaped Pore Geometries and Complex Pore Architectures Fabricated by Cyclic Anodization, Small. 5 (2009) 1392-1397.
DOI: 10.1002/smll.200801645
Google Scholar
[13]
D. Losic, D. J. Losic, Preparation of Porous Anodic Alumina with Periodically Perforated Pores, Langmuir. 25 (2009) 5426-5431.
DOI: 10.1021/la804281v
Google Scholar
[14]
K. Nielsch, F. Müller, A. P. Li, U. Gösele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition, Advanced Materials. 12 (2000) 582-586.
DOI: 10.1002/(sici)1521-4095(200004)12:8<582::aid-adma582>3.0.co;2-3
Google Scholar
[15]
Y. Piao, H. Lim, J. Y. Chang, W. Y. Lee, H. Kim, Nanostructured materials prepared by use of ordered porous alumina membranes, Electrochimica Acta. 50 (2005) 2997-3013.
DOI: 10.1016/j.electacta.2004.12.043
Google Scholar
[16]
X. P. Shen, M. Han, J. M. Hong, X. Zheng, X. Zheng, Template-based CVD synthesis of ZnS nanotube arrays, Chemical Vapor Deposition. 11 (2005) 250-253.
DOI: 10.1002/cvde.200406350
Google Scholar
[17]
W. J. Yu, Y. S. Cho, G. S. Choi, D. Kim, Patterned carbon nanotube field emitter using the rugularing array of an anodic aluminium oxide template, Nanotechnology. 16 (2005) S291-S295.
DOI: 10.1088/0957-4484/16/5/029
Google Scholar
[18]
L. L. Zhao, M. Yosef, M. Steinhart, P. Göring, H. Hofmeister, U. Gösele, S. Schlecht, Porous silicon and alumina as chemically reactive templates for the synthesis of tubes and wires of SnSe, Sn, and SnO2, Angewandte Chemie-International Edition. 45 (2006).
DOI: 10.1002/anie.200502665
Google Scholar
[19]
C. R. Martin, Nanomaterials: a membrane-based synthetic approach, Science, 266 (1994) 1961-(1966).
Google Scholar
[20]
R. P. Jia, Y. Shen, H. Q. Luo, X. G. Chen, Z. D. Hu, D. S. Xue, Enhanced photoluminescence properties of morin and trypsin absorbed on porous alumina films with ordered pores array, Solid State Communications. 130 (2004) 367-372.
DOI: 10.1016/j.ssc.2004.02.033
Google Scholar
[21]
R. P. Jia, Y. Shen, H. Q. Luo, X. G. Chen, Z. D. Hu, D. S. Xue, Photoluminescence spectra of human serum albumen and morin embedded in porous alumina membranes with ordered pore arrays, Journal of Physics: Condensed Matter. 15(2003) 8271.
DOI: 10.1088/0953-8984/15/49/006
Google Scholar
[22]
Y. Xian, Y. Hu, F. Liu, Y. Xian, L. Feng, L. Jin, Template synthesis of highly ordered Prussian blue array and its application to the glucose biosensing, Biosensors and Bioelectronics. 22 (2007) 2827-2833.
DOI: 10.1016/j.bios.2006.11.020
Google Scholar
[23]
M. Darder, P. Aranda, M. Hernández-Vélez, E. Manova, E. Ruiz-Hitzky, Encapsulation of enzymes in alumina membranes of controlled pore size, Thin Solid Films. 495 (2006) 321-326.
DOI: 10.1016/j.tsf.2005.08.285
Google Scholar
[24]
D. M. Dotzauer, J. Dai, L. Sun, M. L Bruening, Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports, Nano Letters. 6 (2006) 2268-2272.
DOI: 10.1021/nl061700q
Google Scholar
[25]
T. M. McCleskey, D. S. Ehler, J. S. Young, D. R. Pesiri, G. D. Jarvinen, N. N. Sauer, Asymmetric membranes with modified gold films as selective gates for metal ion separations, Journal of Membrane Science. 210 (2002) 273-278.
DOI: 10.1016/s0376-7388(02)00387-3
Google Scholar
[26]
S. U. Hong, M. L. Bruening, Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes, Journal of Membrane Science. 280 (2006) 1-5.
DOI: 10.1016/j.memsci.2006.04.028
Google Scholar
[27]
L. Sun, J. Dai, G. L. Baker, M. L. Bruening, High-capacity, protein-binding membranes based on polymer brushes grown in porous substrates, Chemistry of Materials. 18(2006) 4033-4039.
DOI: 10.1021/cm060554m
Google Scholar
[28]
T. Sano, N. Iguchi, K. Iida, T. Sakamoto, M. Baba, H. Kawaura, Size-exclusion chromatography using self-organized nanopores in anodic porous alumina, Applied Physics Letters. 83 (2003) 4438-4440.
DOI: 10.1063/1.1629379
Google Scholar
[29]
T. S. Kustandi, V. D. Samper, W. S. Ng, A. S. Chong, H. Gao, Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template, Journal of Micromechanics and Microengineering. 17 (2007) N75-N81.
DOI: 10.1088/0960-1317/17/10/n02
Google Scholar
[30]
K. S. Liu, J. Du, J. Wu, L. Jiang, Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials, Nanoscale. 4 (2012) 768-772.
DOI: 10.1039/c1nr11369k
Google Scholar
[31]
J. Martin, M. Martín-González, A. del Campo, J. J. Reinosa, J. F. Fernández, Ordered arrays of polymeric nanopores by using inverse nanostructured PTFE surfaces, Nanotechnology. 23 (2012) 385305.
DOI: 10.1088/0957-4484/23/38/385305
Google Scholar
[32]
A. M. M Jani, D. Losic, N. H. Voelcker, Nanoporous anodic aluminium oxide: advances in surface engineering ad emerging applicationms, Progress in Materials Science. 58 (2013) 636-704.
DOI: 10.1016/j.pmatsci.2013.01.002
Google Scholar