Fabrication of PMMA Membranes with Nano-Pillars Array Using Template/Spin-Coating Method

Article Preview

Abstract:

Template/spin-coating method was presented for fabricating single-layer nano-pillar array polymethylmethacrylate (SL-PMMA) and double-layer nano-pillar array polymethylmethacrylate (DL-PMMA) membranes. The different mass ratio of PMMA/DiMethyl Formamide (DMF) solution was dripped on single-layer porous anodic alumina (SL-PAA) or double-layer porous anodic alumina (DL-PAA) membrane and spun at 4000rpm speed for 30 seconds. The SL-PAA and DL-PAA membranes had been put into vacuum oven at 150°C for 2 hours, before SL-PMMA and DL-PMMA were removed. Experimental results show that the regularity degree of PAA fabricated in OAS/PAS is higher than that of PAA fabricated in PAS by two-step anodization method. The ordered pores and clear double-layer outline can be observed from the surface and cross-section FESEM images of DL-PAA membranes. When the content of PMMA in mixture solution is 20 wt%, the top shape of nano-pillars is convex, because the solution was completely filled in the pore of SL-PAA, and the length of nano-pillars is equal to the height of pore of PAA. However, the top pore amount on nano-pillars at ascending speed 20°C per minute is more than that of at ascending speed 10°C per minute. The PMMA membranes with ordered mid-hollow and porous nano-pillars will have wide application prospect in biosensors, chemical sensors, microcapsules fabrication fields due to many advantages such as simple operation, low cost, high specific surface area, etc.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-94

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Lee, R. Ji, U. Gösele, K. Nielius, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature Materials. 5 (2006) 741-747.

DOI: 10.1038/nmat1717

Google Scholar

[2] Y. Song, L. F. Jiang, W. X. Qi, C. Liu, X.F. Zhu, H.B. Jia, High-filed anodization of aluminum in concentrated acid solutions and at higher temperatures, Journal of Electroanalytical Chemistry. 673 (2012) 24-31.

DOI: 10.1016/j.jelechem.2012.03.017

Google Scholar

[3] C. Cheng, A. H. W. Ngan, Fast fabrication of self-ordered anodic porous alumina on oriented aluminum grains by high acid concentration and high temperature anodization, Nanotechnology. 24 (2013) 215602.

DOI: 10.1088/0957-4484/24/21/215602

Google Scholar

[4] W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, U. Gösele, Structural engineering of nanoporous anodic aluminum oxide by pulse anodization of aluminum, Nat. Nano. 3 (2008) 234-239.

DOI: 10.1038/nnano.2008.54

Google Scholar

[5] W. Lee, K. Jae-Cheon, Highly ordered porous alumina with tailor-made pore structures fabricated byplus anodization, Nanotechnology. 21 (2010) 485304.

DOI: 10.1088/0957-4484/21/48/485304

Google Scholar

[6] Y. Li, Z. Y. Ling, S. S. Chen, X. Hu, X.H. He, Fabrication of novel porous anodic alumina membranes by two-step hard anodization, Nanotechnology. 19 (2008) 225604.

DOI: 10.1088/0957-4484/19/22/225604

Google Scholar

[7] T. S. Kustandi, W. W. Loh, H. Gaoan, H.Y. Low, Wafer-scale near-perfect ordered porous alumina on substrates by step and flash imprint lithography, ACS nano. 4 (2010) 2561-2568.

DOI: 10.1021/nn1001744

Google Scholar

[8] H. Asoh, K. Nishio, M. Nakao, T. Tamamura, H. Masuda, Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al, Journal of the Electrochemical Society. 148 (2001) B152-B156.

DOI: 10.1149/1.1355686

Google Scholar

[9] F. Zhang, X. Liu, C. Pan, J. Zhu, Nano-porous anodic aluminum oxide membranes with 6-19 nm pore diameters formed by a low-potential anodizing process, Nanotechnology. 18 (2007) 345302.

DOI: 10.1088/0957-4484/18/34/345302

Google Scholar

[10] L. Zaraska, G. D. Sulka, J. Szeremeta, M Jaslula, Porous anodic alumina formed by anodization of aluminum alloy(AA1050) and hjgh perity aluminum, Electrochimica Acta. 55 (2010) 4377-4386.

DOI: 10.1016/j.electacta.2009.12.054

Google Scholar

[11] M. Gowtham, L. Eude, C. S. Cojocaru, B. Marquardt, H. J. Jeong, P. Legagneux, D. Pribat, Controlled fabrication of patterned lateral porous alumina memebranes, Nanotechnology. 19 (2008) 035303.

DOI: 10.1088/0957-4484/19/03/035303

Google Scholar

[12] D. Losic, M. Lillo, D. J. Losic, Porous Alumina with Shaped Pore Geometries and Complex Pore Architectures Fabricated by Cyclic Anodization, Small. 5 (2009) 1392-1397.

DOI: 10.1002/smll.200801645

Google Scholar

[13] D. Losic, D. J. Losic, Preparation of Porous Anodic Alumina with Periodically Perforated Pores, Langmuir. 25 (2009) 5426-5431.

DOI: 10.1021/la804281v

Google Scholar

[14] K. Nielsch, F. Müller, A. P. Li, U. Gösele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition, Advanced Materials. 12 (2000) 582-586.

DOI: 10.1002/(sici)1521-4095(200004)12:8<582::aid-adma582>3.0.co;2-3

Google Scholar

[15] Y. Piao, H. Lim, J. Y. Chang, W. Y. Lee, H. Kim, Nanostructured materials prepared by use of ordered porous alumina membranes, Electrochimica Acta. 50 (2005) 2997-3013.

DOI: 10.1016/j.electacta.2004.12.043

Google Scholar

[16] X. P. Shen, M. Han, J. M. Hong, X. Zheng, X. Zheng, Template-based CVD synthesis of ZnS nanotube arrays, Chemical Vapor Deposition. 11 (2005) 250-253.

DOI: 10.1002/cvde.200406350

Google Scholar

[17] W. J. Yu, Y. S. Cho, G. S. Choi, D. Kim, Patterned carbon nanotube field emitter using the rugularing array of an anodic aluminium oxide template, Nanotechnology. 16 (2005) S291-S295.

DOI: 10.1088/0957-4484/16/5/029

Google Scholar

[18] L. L. Zhao, M. Yosef, M. Steinhart, P. Göring, H. Hofmeister, U. Gösele, S. Schlecht, Porous silicon and alumina as chemically reactive templates for the synthesis of tubes and wires of SnSe, Sn, and SnO2, Angewandte Chemie-International Edition. 45 (2006).

DOI: 10.1002/anie.200502665

Google Scholar

[19] C. R. Martin, Nanomaterials: a membrane-based synthetic approach, Science, 266 (1994) 1961-(1966).

Google Scholar

[20] R. P. Jia, Y. Shen, H. Q. Luo, X. G. Chen, Z. D. Hu, D. S. Xue, Enhanced photoluminescence properties of morin and trypsin absorbed on porous alumina films with ordered pores array, Solid State Communications. 130 (2004) 367-372.

DOI: 10.1016/j.ssc.2004.02.033

Google Scholar

[21] R. P. Jia, Y. Shen, H. Q. Luo, X. G. Chen, Z. D. Hu, D. S. Xue, Photoluminescence spectra of human serum albumen and morin embedded in porous alumina membranes with ordered pore arrays, Journal of Physics: Condensed Matter. 15(2003) 8271.

DOI: 10.1088/0953-8984/15/49/006

Google Scholar

[22] Y. Xian, Y. Hu, F. Liu, Y. Xian, L. Feng, L. Jin, Template synthesis of highly ordered Prussian blue array and its application to the glucose biosensing, Biosensors and Bioelectronics. 22 (2007) 2827-2833.

DOI: 10.1016/j.bios.2006.11.020

Google Scholar

[23] M. Darder, P. Aranda, M. Hernández-Vélez, E. Manova, E. Ruiz-Hitzky, Encapsulation of enzymes in alumina membranes of controlled pore size, Thin Solid Films. 495 (2006) 321-326.

DOI: 10.1016/j.tsf.2005.08.285

Google Scholar

[24] D. M. Dotzauer, J. Dai, L. Sun, M. L Bruening, Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports, Nano Letters. 6 (2006) 2268-2272.

DOI: 10.1021/nl061700q

Google Scholar

[25] T. M. McCleskey, D. S. Ehler, J. S. Young, D. R. Pesiri, G. D. Jarvinen, N. N. Sauer, Asymmetric membranes with modified gold films as selective gates for metal ion separations, Journal of Membrane Science. 210 (2002) 273-278.

DOI: 10.1016/s0376-7388(02)00387-3

Google Scholar

[26] S. U. Hong, M. L. Bruening, Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes, Journal of Membrane Science. 280 (2006) 1-5.

DOI: 10.1016/j.memsci.2006.04.028

Google Scholar

[27] L. Sun, J. Dai, G. L. Baker, M. L. Bruening, High-capacity, protein-binding membranes based on polymer brushes grown in porous substrates, Chemistry of Materials. 18(2006) 4033-4039.

DOI: 10.1021/cm060554m

Google Scholar

[28] T. Sano, N. Iguchi, K. Iida, T. Sakamoto, M. Baba, H. Kawaura, Size-exclusion chromatography using self-organized nanopores in anodic porous alumina, Applied Physics Letters. 83 (2003) 4438-4440.

DOI: 10.1063/1.1629379

Google Scholar

[29] T. S. Kustandi, V. D. Samper, W. S. Ng, A. S. Chong, H. Gao, Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template, Journal of Micromechanics and Microengineering. 17 (2007) N75-N81.

DOI: 10.1088/0960-1317/17/10/n02

Google Scholar

[30] K. S. Liu, J. Du, J. Wu, L. Jiang, Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials, Nanoscale. 4 (2012) 768-772.

DOI: 10.1039/c1nr11369k

Google Scholar

[31] J. Martin, M. Martín-González, A. del Campo, J. J. Reinosa, J. F. Fernández, Ordered arrays of polymeric nanopores by using inverse nanostructured PTFE surfaces, Nanotechnology. 23 (2012) 385305.

DOI: 10.1088/0957-4484/23/38/385305

Google Scholar

[32] A. M. M Jani, D. Losic, N. H. Voelcker, Nanoporous anodic aluminium oxide: advances in surface engineering ad emerging applicationms, Progress in Materials Science. 58 (2013) 636-704.

DOI: 10.1016/j.pmatsci.2013.01.002

Google Scholar