[1]
K.M. Abou El-Nour, A. Eftaiha, A. Al-Warthan, R.A. Ammar, Synthesis and applications of silver nanoparticles, Arabian J Chem. 3 (2010) 135–40.
DOI: 10.1016/j.arabjc.2010.04.008
Google Scholar
[2]
K.H. Cho, J. E Park, T. Osaka, S.G. Park, The study of antimicrobial activity and preservative effects of nanosilver ingredient, Electrochimica Acta, 51 (2005) 956-960.
DOI: 10.1016/j.electacta.2005.04.071
Google Scholar
[3]
B.D. Du, D.V. Phu, N.N. Duy, N.T. Lan and V.T. Lang, Preparation of colloidal silver nanoparticles in Poly(vinylpyrrolidone) by γ-ray irradiation, Journal of Experimental Nanoscience, 3 (2008) 207-213.
DOI: 10.1080/17458080802353527
Google Scholar
[4]
D. Wei, W. Sun, W. Qian, Y. Ye and X. Ma, The synthesis of chitosan based silver nanoparticles and their antibacterial activity, Carbohydrate Research, 344 (2009) 2378.
DOI: 10.1016/j.carres.2009.09.001
Google Scholar
[5]
F. Gottschalk, B. Nowack, The release of engineered nanomaterials to the environment, J. Environ. Monit, 13 (2011) 1145−1155.
DOI: 10.1039/c0em00547a
Google Scholar
[6]
A. Ahmad, P. Mukherjee, S. Senapati, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids Surf B Biointerfaces, 28 (2003) 313–18.
DOI: 10.1016/s0927-7765(02)00174-1
Google Scholar
[7]
J.L. Bai Y.J. Du, One-pot synthesis of polyacrylamide-gold nanocomposite, Mater Chem Phys, 106 (2007) 412–20.
Google Scholar
[8]
C. Caro, P.M. Castillo, R. Klippstein, Silver nanoparticles: sensing and imaging applications. In: Perez DP, ed. Silver nanoparticles, Rijeka, Croatia: InTech, (2010) 201–24.
DOI: 10.5772/8513
Google Scholar
[9]
J.Z. Guo, H. Cui, W. Zhou, W. Wang, Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide, J Photochem Photobiol A Chem, 193 (2008) 89–96.
DOI: 10.1016/j.jphotochem.2007.04.034
Google Scholar
[10]
M.F. Lengke, M.E. Fleet, G. Southam, Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex, Langmuir, 23 (2007) 2694–2699.
DOI: 10.1021/la0613124
Google Scholar
[11]
M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol Adv, 27 (2009) 76–83.
DOI: 10.1016/j.biotechadv.2008.09.002
Google Scholar
[12]
K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomedicine Nanotechnol Biol Med, 6 (2010) 257–62.
Google Scholar
[13]
A. Valizadeh, H. Mikaeili, M. Samiei, Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett, 7 (2012) 480–93.
DOI: 10.1186/1556-276x-7-480
Google Scholar
[14]
S. Zhu, C. Du, Y. Fu, Fabrication and characterization of rhombic silver nanoparticles for biosensing, Optical Mater, 31 (2009) 769–74.
DOI: 10.1016/j.optmat.2008.07.014
Google Scholar
[15]
J.M. Kohlera, L. Abahmanea, J. Wagnera, J. Albertb and G. Mayerb, Preparation of metal nanoparticles with varied composition for catalytical applications in microreactors, Chemical Engineering Science, 63 (2008) 5048-5055.
DOI: 10.1016/j.ces.2007.11.038
Google Scholar
[16]
N. Pradhan, A. Pal and T. Pal, Silver nanoparticle catalyzed reduction of aromatic nitro compounds, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 196 (2002) 247-257.
DOI: 10.1016/s0927-7757(01)01040-8
Google Scholar
[17]
X. Wang, S. Zhang and Z. Zhang, Synthesis of hexagonal nanosized silver sulfide at room temperature, Materials Chemistry and Physics, 107 (2008) 9-12.
DOI: 10.1016/j.matchemphys.2007.07.015
Google Scholar
[18]
J. Perelaer, C.E. Hendriks, A.W.M. de Laat and U. S. Schubert, One-step inkjet printing of conductive silver tracks on polymer substrates, Nanotechnology, 20 (2009) 1653031-1653035.
DOI: 10.1088/0957-4484/20/16/165303
Google Scholar
[19]
C. Jiang, D.J. Cardin and S.C. Tsang, Conductive Three- Dimensional Material Assembled from Silver Nanoparticles Using a Conjugated Dithiol Linker, Chem. Mater, 20 (2008) 14-16.
DOI: 10.1021/cm7020615
Google Scholar
[20]
M.A. Albrecht, C.W. Evans, C.L. Raston, Green chemistry and the health implications of nanoparticles, Green Chem, 8 (2006) 417– 432.
DOI: 10.1039/b517131h
Google Scholar
[21]
E. Rodriguez-Leon, R. Iniguez-Palomares, R. Elena Navarro, R. Herrera-Urbina, J. Tanori, C. Iniguez-Palomares and A. Maldonado, Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts), Nanoscale Research Letters, 8 (2013).
DOI: 10.1186/1556-276x-8-318
Google Scholar
[22]
J.I. Hussain, S. Kumar, A.A. Hashmi, Z. Khan, Silver nanoparticles: preparation, characterization, and kinetics, Adv. Mat. Lett, 2 (2011) 188-194.
DOI: 10.5185/amlett.2011.1206
Google Scholar
[23]
P. Banerjee, M. Satapathy, A. Mukhopahayay and P. Das, Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis, Bioresources and Bioprocessing, 1 (2014).
DOI: 10.1186/s40643-014-0003-y
Google Scholar
[24]
B. Sadeghi, M. Jamali, Sh. Kia, A. Amininia, S. Ghafari, Synthesis and characterization of silver nanoparticles for antibacterial activity, Int.J. Nano. Dim, 1 (2010) 119-124.
Google Scholar
[25]
W. Pan, Y. Chen, Preparation of Ag–Polyacrylamide Nanocomposites by Ultraviolet Irradiation Technique, Applied Mechanics and Materials, 44-47 (2010) 2199-2202.
DOI: 10.4028/www.scientific.net/amm.44-47.2199
Google Scholar
[26]
M. Melissa Kemp, A. Kumar, S. Mousa, Tae-Joon Park, P. Ajayan, N. Kubotera, S.A. Mousa and R.J. Linhardt, Synthesis of Gold and Silver Nanoparticles Stabilized with Glycosaminoglycans Having Distinctive Biological Activities, Biomacromolecules, 10, (2009).
DOI: 10.1021/bm801266t
Google Scholar
[27]
M.B. Ahmad, M.Y. Tay, K.S. Mohd, Z. Hussein and J.J. Lim, Green Synthesis and Characterization of Silver/Chitosan/Polyethylene Glycol Nanocomposites without any Reducing Agent, Int. J. Mol. Sci, 12 (2011) 4872-4884.
DOI: 10.3390/ijms12084872
Google Scholar
[28]
Q. Huang, W. Shen, Q. Xu, R. Tan, W. Song, Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity, Materials Chemistry and Physics Volume, 147 (2014) 550–556.
DOI: 10.1016/j.matchemphys.2014.05.030
Google Scholar
[29]
N.L. Dmitruk, O.Y. Borkovskaya, I.B. Mamontova, S.V. Mamykin, S.Z. Malynych and V.R. Romanyuk, Metal nanoparticle-enhanced photocurrent in GaAs photovoltaic structures with microtextured interfaces, Nanoscale Research Letters, 10(2015) 72.
DOI: 10.1186/s11671-015-0786-6
Google Scholar
[30]
D. Pencheva, R. Bryaskova, T. Kantardjiev, Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles, Materials Science and Engineering, 05/2012; 32(7). DOI: 10. 1016/j. msec.
DOI: 10.1016/j.msec.2012.05.016
Google Scholar
[31]
N. Ushakov, N. Radchuk, A. Ushakov, Optical properties of metallic nanoparticles trapped by arabinogalactan molecule, doi: 10. 1117/12. 2070477 From Conference Volume 9450 Photonics, Devices, and Systems, Petr Páta Prague, Czech Republic, (2014).
DOI: 10.1117/12.2070477
Google Scholar
[32]
P. Jain, T. Pradeep, Potential of Silver Nanoparticle-Coated Polyurethane Foam As an Antibacterial Water Filter, Biotechnology and Bioengineering, 90 (2005) 59-63.
DOI: 10.1002/bit.20368
Google Scholar
[33]
R. Sato-Berŕu, R. Redón, A. Vázquez-Olmos and J.M. Saniger, Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy, Journal of Raman Spectroscopy, 40 (2009) 376–380.
DOI: 10.1002/jrs.2135
Google Scholar
[34]
K. Chaloupka, Y. Malam and A.M. Seifalian, Nanosilver as a new generation of nanoproduct in biomedical applications, Trends in Biotechnology, 28 (2010) 580–588.
DOI: 10.1016/j.tibtech.2010.07.006
Google Scholar
[35]
V. Vilas, D. Philip and J. Mathew, Catalytically and biologically active silver nanoparticles synthesized using essential oil, Spectrochimica Acta, Molecular and Biomolecular Spectroscopy, 132 (2014) 743–750.
DOI: 10.1016/j.saa.2014.05.046
Google Scholar