Synthesis and Study of Structure Silver Nanoparticles by Polyethyleneglycol - Gum Arabic Polymers

Article Preview

Abstract:

Silver nanoparticles were synthesized at 293÷353 K temperature range by NaBH4 and HCOOH solutions with low concentration at polyethyleneglycol having average molecular weight of 40000 and 200 kDa gum arabic medium. Obtained silver nanoparticles were studied using methods of X-ray diffraction, UV-Vis, FTIR spectroscopy, scanning electron microscope. It was determined that sizes of silver nanoparticles which stabilize at polymer medium vary from 12 to 26 nm range depending on mole ratio, temperature and reduction medium of initial substances. It was shown by FTIR-spectroscopy that -OH and -COOH groups in polymer take an active part in stabilization of silver nanoparticles. It was determinated by UV-Vis study of silver nanoparticles containing polymer composition in aqueous condition that 412 nm which is specific to silver atoms do not change sharply for 4-5 days.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-33

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.M. Abou El-Nour, A. Eftaiha, A. Al-Warthan, R.A. Ammar, Synthesis and applications of silver nanoparticles, Arabian J Chem. 3 (2010) 135–40.

DOI: 10.1016/j.arabjc.2010.04.008

Google Scholar

[2] K.H. Cho, J. E Park, T. Osaka, S.G. Park, The study of antimicrobial activity and preservative effects of nanosilver ingredient, Electrochimica Acta, 51 (2005) 956-960.

DOI: 10.1016/j.electacta.2005.04.071

Google Scholar

[3] B.D. Du, D.V. Phu, N.N. Duy, N.T. Lan and V.T. Lang, Preparation of colloidal silver nanoparticles in Poly(vinylpyrrolidone) by γ-ray irradiation, Journal of Experimental Nanoscience, 3 (2008) 207-213.

DOI: 10.1080/17458080802353527

Google Scholar

[4] D. Wei, W. Sun, W. Qian, Y. Ye and X. Ma, The synthesis of chitosan based silver nanoparticles and their antibacterial activity, Carbohydrate Research, 344 (2009) 2378.

DOI: 10.1016/j.carres.2009.09.001

Google Scholar

[5] F. Gottschalk, B. Nowack, The release of engineered nanomaterials to the environment, J. Environ. Monit, 13 (2011) 1145−1155.

DOI: 10.1039/c0em00547a

Google Scholar

[6] A. Ahmad, P. Mukherjee, S. Senapati, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids Surf B Biointerfaces, 28 (2003) 313–18.

DOI: 10.1016/s0927-7765(02)00174-1

Google Scholar

[7] J.L. Bai Y.J. Du, One-pot synthesis of polyacrylamide-gold nanocomposite, Mater Chem Phys, 106 (2007) 412–20.

Google Scholar

[8] C. Caro, P.M. Castillo, R. Klippstein, Silver nanoparticles: sensing and imaging applications. In: Perez DP, ed. Silver nanoparticles, Rijeka, Croatia: InTech, (2010) 201–24.

DOI: 10.5772/8513

Google Scholar

[9] J.Z. Guo, H. Cui, W. Zhou, W. Wang, Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide, J Photochem Photobiol A Chem, 193 (2008) 89–96.

DOI: 10.1016/j.jphotochem.2007.04.034

Google Scholar

[10] M.F. Lengke, M.E. Fleet, G. Southam, Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex, Langmuir, 23 (2007) 2694–2699.

DOI: 10.1021/la0613124

Google Scholar

[11] M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol Adv, 27 (2009) 76–83.

DOI: 10.1016/j.biotechadv.2008.09.002

Google Scholar

[12] K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomedicine Nanotechnol Biol Med, 6 (2010) 257–62.

Google Scholar

[13] A. Valizadeh, H. Mikaeili, M. Samiei, Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett, 7 (2012) 480–93.

DOI: 10.1186/1556-276x-7-480

Google Scholar

[14] S. Zhu, C. Du, Y. Fu, Fabrication and characterization of rhombic silver nanoparticles for biosensing, Optical Mater, 31 (2009) 769–74.

DOI: 10.1016/j.optmat.2008.07.014

Google Scholar

[15] J.M. Kohlera, L. Abahmanea, J. Wagnera, J. Albertb and G. Mayerb, Preparation of metal nanoparticles with varied composition for catalytical applications in microreactors, Chemical Engineering Science, 63 (2008) 5048-5055.

DOI: 10.1016/j.ces.2007.11.038

Google Scholar

[16] N. Pradhan, A. Pal and T. Pal, Silver nanoparticle catalyzed reduction of aromatic nitro compounds, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 196 (2002) 247-257.

DOI: 10.1016/s0927-7757(01)01040-8

Google Scholar

[17] X. Wang, S. Zhang and Z. Zhang, Synthesis of hexagonal nanosized silver sulfide at room temperature, Materials Chemistry and Physics, 107 (2008) 9-12.

DOI: 10.1016/j.matchemphys.2007.07.015

Google Scholar

[18] J. Perelaer, C.E. Hendriks, A.W.M. de Laat and U. S. Schubert, One-step inkjet printing of conductive silver tracks on polymer substrates, Nanotechnology, 20 (2009) 1653031-1653035.

DOI: 10.1088/0957-4484/20/16/165303

Google Scholar

[19] C. Jiang, D.J. Cardin and S.C. Tsang, Conductive Three- Dimensional Material Assembled from Silver Nanoparticles Using a Conjugated Dithiol Linker, Chem. Mater, 20 (2008) 14-16.

DOI: 10.1021/cm7020615

Google Scholar

[20] M.A. Albrecht, C.W. Evans, C.L. Raston, Green chemistry and the health implications of nanoparticles, Green Chem, 8 (2006) 417– 432.

DOI: 10.1039/b517131h

Google Scholar

[21] E. Rodriguez-Leon, R. Iniguez-Palomares, R. Elena Navarro, R. Herrera-Urbina, J. Tanori, C. Iniguez-Palomares and A. Maldonado, Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts), Nanoscale Research Letters, 8 (2013).

DOI: 10.1186/1556-276x-8-318

Google Scholar

[22] J.I. Hussain, S. Kumar, A.A. Hashmi, Z. Khan, Silver nanoparticles: preparation, characterization, and kinetics, Adv. Mat. Lett, 2 (2011) 188-194.

DOI: 10.5185/amlett.2011.1206

Google Scholar

[23] P. Banerjee, M. Satapathy, A. Mukhopahayay and P. Das, Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis, Bioresources and Bioprocessing, 1 (2014).

DOI: 10.1186/s40643-014-0003-y

Google Scholar

[24] B. Sadeghi, M. Jamali, Sh. Kia, A. Amininia, S. Ghafari, Synthesis and characterization of silver nanoparticles for antibacterial activity, Int.J. Nano. Dim, 1 (2010) 119-124.

Google Scholar

[25] W. Pan, Y. Chen, Preparation of Ag–Polyacrylamide Nanocomposites by Ultraviolet Irradiation Technique, Applied Mechanics and Materials, 44-47 (2010) 2199-2202.

DOI: 10.4028/www.scientific.net/amm.44-47.2199

Google Scholar

[26] M. Melissa Kemp, A. Kumar, S. Mousa, Tae-Joon Park, P. Ajayan, N. Kubotera, S.A. Mousa and R.J. Linhardt, Synthesis of Gold and Silver Nanoparticles Stabilized with Glycosaminoglycans Having Distinctive Biological Activities, Biomacromolecules, 10, (2009).

DOI: 10.1021/bm801266t

Google Scholar

[27] M.B. Ahmad, M.Y. Tay, K.S. Mohd, Z. Hussein and J.J. Lim, Green Synthesis and Characterization of Silver/Chitosan/Polyethylene Glycol Nanocomposites without any Reducing Agent, Int. J. Mol. Sci, 12 (2011) 4872-4884.

DOI: 10.3390/ijms12084872

Google Scholar

[28] Q. Huang, W. Shen, Q. Xu, R. Tan, W. Song, Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity, Materials Chemistry and Physics Volume, 147 (2014) 550–556.

DOI: 10.1016/j.matchemphys.2014.05.030

Google Scholar

[29] N.L. Dmitruk, O.Y. Borkovskaya, I.B. Mamontova, S.V. Mamykin, S.Z. Malynych and V.R. Romanyuk, Metal nanoparticle-enhanced photocurrent in GaAs photovoltaic structures with microtextured interfaces, Nanoscale Research Letters, 10(2015) 72.

DOI: 10.1186/s11671-015-0786-6

Google Scholar

[30] D. Pencheva, R. Bryaskova, T. Kantardjiev, Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles, Materials Science and Engineering, 05/2012; 32(7). DOI: 10. 1016/j. msec.

DOI: 10.1016/j.msec.2012.05.016

Google Scholar

[31] N. Ushakov, N. Radchuk, A. Ushakov, Optical properties of metallic nanoparticles trapped by arabinogalactan molecule, doi: 10. 1117/12. 2070477 From Conference Volume 9450 Photonics, Devices, and Systems, Petr Páta Prague, Czech Republic, (2014).

DOI: 10.1117/12.2070477

Google Scholar

[32] P. Jain, T. Pradeep, Potential of Silver Nanoparticle-Coated Polyurethane Foam As an Antibacterial Water Filter, Biotechnology and Bioengineering, 90 (2005) 59-63.

DOI: 10.1002/bit.20368

Google Scholar

[33] R. Sato-Berŕu, R. Redón, A. Vázquez-Olmos and J.M. Saniger, Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy, Journal of Raman Spectroscopy, 40 (2009) 376–380.

DOI: 10.1002/jrs.2135

Google Scholar

[34] K. Chaloupka, Y. Malam and A.M. Seifalian, Nanosilver as a new generation of nanoproduct in biomedical applications, Trends in Biotechnology, 28 (2010) 580–588.

DOI: 10.1016/j.tibtech.2010.07.006

Google Scholar

[35] V. Vilas, D. Philip and J. Mathew, Catalytically and biologically active silver nanoparticles synthesized using essential oil, Spectrochimica Acta, Molecular and Biomolecular Spectroscopy, 132 (2014) 743–750.

DOI: 10.1016/j.saa.2014.05.046

Google Scholar