Numerical Simulation of the Mechanical Behaviour of the Multi-Walled Carbon Nanotubes

Abstract:

Article Preview

The mechanical behaviour of non-chiral multi-walled carbon nanotubes under tensile and bending loading conditions was investigated. For this purpose, a simplified finite element model of armchair and zigzag multi-walled carbon nanotubes, which does not take into account the van der Waals forces acting between layers, was tested in order to evaluate their tensile and bending rigidities, as well as the Young’s modulus. The current numerical simulation results are compared with data reported in the literature. The robustness of the simplified model for evaluation of the Young’s modulus of multi-walled carbon nanotubes is discussed.

Info:

Periodical:

Edited by:

Prof. Andreas Öchsner, Irina Belova and Prof. Graeme E. Murch

Pages:

106-119

Citation:

N. A. Sakharova et al., "Numerical Simulation of the Mechanical Behaviour of the Multi-Walled Carbon Nanotubes", Journal of Nano Research, Vol. 47, pp. 106-119, 2017

Online since:

May 2017

Export:

Price:

$38.00

[1] H. Kurita, M. Estili, H. Kwon, T. Miyazaki, W. Zhou, J. -F. Silvain, A. Kawasaki, Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminium, Compos. Part A- Appl. S. 68 (2015) 133–139.

DOI: https://doi.org/10.1016/j.compositesa.2014.09.014

[2] L. Wang, Z. Zhang, X. Han, In situ experimental mechanics of nanomaterials at the atomic scale, NPG Asia Materials 5 (2013) e40.

DOI: https://doi.org/10.1038/am.2012.70

[3] C. Kallesøe, M.B. Larsen, P. Bøggild, K. Mølhave, 3D mechanical measurements with an atomic force microscope on 1D structures, Rev Sci Instrum 82 (2012) 023704.

DOI: https://doi.org/10.1063/1.3681784

[4] S.I. Yengejeh, S.A. Kazemi, A. Öchsner, Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review, Compos. Part B-Eng. 86 (2016) 95–107.

DOI: https://doi.org/10.1016/j.compositesb.2015.10.006

[5] H.W. Zhang, J.B. Wang, X. Guo, Predicting the elastic properties of single-walled carbon nanotubes, J. Mech. Phys. Solids 53 (2005) 1929–(1950).

DOI: https://doi.org/10.1016/j.jmps.2005.05.001

[6] S.S. Gupta, R.C. Batra, Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes, Comput. Mater. Sci. 43 (2008) 715–723.

DOI: https://doi.org/10.1016/j.commatsci.2008.01.032

[7] R. Rafiee, R.M. Moghadam, On the modelling of carbon nanotubes: A critical review, Compos.: Part B-Eng. 56 (2014) 435–449.

[8] C. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct. 40 (2003) 2487–2499.

[9] K.I. Tserpes, P. Papanikos, Finite Element modeling of single-walled carbon nanotubes, Compos. Part B–Eng. 36 (2005) 468–477.

DOI: https://doi.org/10.1016/j.compositesb.2004.10.003

[10] N.A. Sakharova, A.F.G. Pereira, J.M. Antunes, C.M.A. Brett, J.V. Fernandes, Mechanical characterization of single-walled carbon nanotubes: Numerical simulation study, Compos. Part B–Eng. 75 (2015) 73–85.

DOI: https://doi.org/10.1016/j.compositesb.2015.01.014

[11] P. Papanikos, D.D. Nikolopoulos, K.I. Tserpes, Equivalent beams for carbon nanotubes, Comput. Mater. Sci. 43 (2008) 345–352.

DOI: https://doi.org/10.1016/j.commatsci.2007.12.010

[12] X. Lu, Z. Hu, Mechanical property evaluation of single-walled carbon nanotubes by finite element modelling, Compos.: Part B-Eng. 43 (2012) 1902–(1913).

DOI: https://doi.org/10.1016/j.compositesb.2012.02.002

[13] C. Li, T.W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63 (2003) 1517–1524.

DOI: https://doi.org/10.1016/s0266-3538(03)00072-1

[14] A.L. Kalamkarov, A.V. Georgiades, S.K. Rokkam, V.P. Veedu, N.M. Ghasemi-Nejhad, Analytical and numerical techniques to predict carbon nanotubes properties, Int. J. Solids Struct. 43 (2006) 6832–6854.

DOI: https://doi.org/10.1016/j.ijsolstr.2006.02.009

[15] M. Rahmandoust, A. Öchsner, On finite element modeling of single- and multi-walled carbon nanotubes, J. Nanosci. Nanotech. 12 (2012) 8129–8136.

DOI: https://doi.org/10.1166/jnn.2012.4521

[16] A. Ghavamian, M. Rahmandoust, A. Öchsner, A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes, Comput. Mater. Sci. 62 (2012) 110–116.

DOI: https://doi.org/10.1016/j.commatsci.2012.05.003

[17] C.W. Fan, Y.Y. Liu, Chyanbin Hwu, Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes, Appl. Phys. A-Mater. 95 (2009) 819–831.

DOI: https://doi.org/10.1007/s00339-009-5080-y

[18] M.N. Nahas, M. Abd-Rabou, Finite element modeling of multi-walled carbon nanotubes, Int. J. Eng. Sci. 10 (2010) 63–71.

[19] M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes, Carbon 33 (1995) 883–891.

DOI: https://doi.org/10.1016/0008-6223(95)00017-8

[20] O.V. Kharissova, B.I. Kharisov, Variations of interlayer spacing in carbon nanotubes, RSC Adv. 58 (2014) 30807–30815.

DOI: https://doi.org/10.1039/c4ra04201h

[21] C. -H. Kiang, M. Endo, P.M. Ajayan, G. Dresselhaus, M.S. Dresselhaus, Size effects in carbon nanotubes, Phys. Rev. Lett. 81 (1998) 1869–1872.

DOI: https://doi.org/10.1103/physrevlett.81.1869

[22] S. Melchor, J.A. Dobado, CoNTub: an algorithm for connecting two arbitrary carbon nanotubes, J. Chem. Inf. Comp. Sci. 44 (2004) 1639–1646.

DOI: https://doi.org/10.1021/ci049857w

[23] B.R. Gelin, Molecular modelling of polymer structures and properties, Hanser/Gardner Publishers, Cincinnati (OH), (1994).

[24] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, et al., A second generation force-field for the simulation of proteins, nucleic acids and organic molecules, J. Am. Chem. Soc. 117 (1995) 5179–5197.

DOI: https://doi.org/10.1021/ja00124a002