Numerical Simulation of the Mechanical Behaviour of the Multi-Walled Carbon Nanotubes

Article Preview

Abstract:

The mechanical behaviour of non-chiral multi-walled carbon nanotubes under tensile and bending loading conditions was investigated. For this purpose, a simplified finite element model of armchair and zigzag multi-walled carbon nanotubes, which does not take into account the van der Waals forces acting between layers, was tested in order to evaluate their tensile and bending rigidities, as well as the Young’s modulus. The current numerical simulation results are compared with data reported in the literature. The robustness of the simplified model for evaluation of the Young’s modulus of multi-walled carbon nanotubes is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-119

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Kurita, M. Estili, H. Kwon, T. Miyazaki, W. Zhou, J. -F. Silvain, A. Kawasaki, Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminium, Compos. Part A- Appl. S. 68 (2015) 133–139.

DOI: 10.1016/j.compositesa.2014.09.014

Google Scholar

[2] L. Wang, Z. Zhang, X. Han, In situ experimental mechanics of nanomaterials at the atomic scale, NPG Asia Materials 5 (2013) e40.

DOI: 10.1038/am.2012.70

Google Scholar

[3] C. Kallesøe, M.B. Larsen, P. Bøggild, K. Mølhave, 3D mechanical measurements with an atomic force microscope on 1D structures, Rev Sci Instrum 82 (2012) 023704.

DOI: 10.1063/1.3681784

Google Scholar

[4] S.I. Yengejeh, S.A. Kazemi, A. Öchsner, Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review, Compos. Part B-Eng. 86 (2016) 95–107.

DOI: 10.1016/j.compositesb.2015.10.006

Google Scholar

[5] H.W. Zhang, J.B. Wang, X. Guo, Predicting the elastic properties of single-walled carbon nanotubes, J. Mech. Phys. Solids 53 (2005) 1929–(1950).

DOI: 10.1016/j.jmps.2005.05.001

Google Scholar

[6] S.S. Gupta, R.C. Batra, Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes, Comput. Mater. Sci. 43 (2008) 715–723.

DOI: 10.1016/j.commatsci.2008.01.032

Google Scholar

[7] R. Rafiee, R.M. Moghadam, On the modelling of carbon nanotubes: A critical review, Compos.: Part B-Eng. 56 (2014) 435–449.

Google Scholar

[8] C. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct. 40 (2003) 2487–2499.

Google Scholar

[9] K.I. Tserpes, P. Papanikos, Finite Element modeling of single-walled carbon nanotubes, Compos. Part B–Eng. 36 (2005) 468–477.

DOI: 10.1016/j.compositesb.2004.10.003

Google Scholar

[10] N.A. Sakharova, A.F.G. Pereira, J.M. Antunes, C.M.A. Brett, J.V. Fernandes, Mechanical characterization of single-walled carbon nanotubes: Numerical simulation study, Compos. Part B–Eng. 75 (2015) 73–85.

DOI: 10.1016/j.compositesb.2015.01.014

Google Scholar

[11] P. Papanikos, D.D. Nikolopoulos, K.I. Tserpes, Equivalent beams for carbon nanotubes, Comput. Mater. Sci. 43 (2008) 345–352.

DOI: 10.1016/j.commatsci.2007.12.010

Google Scholar

[12] X. Lu, Z. Hu, Mechanical property evaluation of single-walled carbon nanotubes by finite element modelling, Compos.: Part B-Eng. 43 (2012) 1902–(1913).

DOI: 10.1016/j.compositesb.2012.02.002

Google Scholar

[13] C. Li, T.W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63 (2003) 1517–1524.

DOI: 10.1016/s0266-3538(03)00072-1

Google Scholar

[14] A.L. Kalamkarov, A.V. Georgiades, S.K. Rokkam, V.P. Veedu, N.M. Ghasemi-Nejhad, Analytical and numerical techniques to predict carbon nanotubes properties, Int. J. Solids Struct. 43 (2006) 6832–6854.

DOI: 10.1016/j.ijsolstr.2006.02.009

Google Scholar

[15] M. Rahmandoust, A. Öchsner, On finite element modeling of single- and multi-walled carbon nanotubes, J. Nanosci. Nanotech. 12 (2012) 8129–8136.

DOI: 10.1166/jnn.2012.4521

Google Scholar

[16] A. Ghavamian, M. Rahmandoust, A. Öchsner, A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes, Comput. Mater. Sci. 62 (2012) 110–116.

DOI: 10.1016/j.commatsci.2012.05.003

Google Scholar

[17] C.W. Fan, Y.Y. Liu, Chyanbin Hwu, Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes, Appl. Phys. A-Mater. 95 (2009) 819–831.

DOI: 10.1007/s00339-009-5080-y

Google Scholar

[18] M.N. Nahas, M. Abd-Rabou, Finite element modeling of multi-walled carbon nanotubes, Int. J. Eng. Sci. 10 (2010) 63–71.

Google Scholar

[19] M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes, Carbon 33 (1995) 883–891.

DOI: 10.1016/0008-6223(95)00017-8

Google Scholar

[20] O.V. Kharissova, B.I. Kharisov, Variations of interlayer spacing in carbon nanotubes, RSC Adv. 58 (2014) 30807–30815.

DOI: 10.1039/c4ra04201h

Google Scholar

[21] C. -H. Kiang, M. Endo, P.M. Ajayan, G. Dresselhaus, M.S. Dresselhaus, Size effects in carbon nanotubes, Phys. Rev. Lett. 81 (1998) 1869–1872.

DOI: 10.1103/physrevlett.81.1869

Google Scholar

[22] S. Melchor, J.A. Dobado, CoNTub: an algorithm for connecting two arbitrary carbon nanotubes, J. Chem. Inf. Comp. Sci. 44 (2004) 1639–1646.

DOI: 10.1021/ci049857w

Google Scholar

[23] B.R. Gelin, Molecular modelling of polymer structures and properties, Hanser/Gardner Publishers, Cincinnati (OH), (1994).

Google Scholar

[24] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, et al., A second generation force-field for the simulation of proteins, nucleic acids and organic molecules, J. Am. Chem. Soc. 117 (1995) 5179–5197.

DOI: 10.1021/ja00124a002

Google Scholar