Synthesis and Characterization of YCrxAl1-xO3 Particles by a Reverse Micelle Processing

Article Preview

Abstract:

YCrxAl1-xO3 nanoparticles were synthesized by a reverse micelle processing for inorganic pigment. Y(NO3)2·6H2O, Cr (NO3)2·6H2O and Al (NO3)3·9H2O are used for precursors in order to synthesis YCrxAl1-xO3 nanoparticles. The aqueous solution consists of mixing the molar ratio of Y/Cr/Al at 1:x:1-x and heat treated at 900~1300°C for 2h. The average size and distribution of synthesized YCrxAl1-xO3 powders was in the range of 10-20nm and narrow, respectively. The average size of the synthesized YCrxAl1-xO3 powders increased with increasing water to surfactant molar ratio and heating temperature. The crystallinity of synthesized YCrxAl1-xO3 powder increased with increasing heating temperature. The synthesized YCrxAl1-xO3 powders were characterized by X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM) and color spectrophotometer. The properties of the synthesized powders were affected by such variables as molar ratio, heating temperature etc.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-59

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Punnoose, H. Magnone, M. S. Seehra, J. Bonevich, Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles, Phys. Rev. B: Condens. Matter Mater. Phys. 64 (2001) 174420-1-8.

DOI: 10.1103/physrevb.64.174420

Google Scholar

[2] P. Calvert, Inkjet Printing for Materials and Devices, Chem. Mater. 13 (2001) 3299-3305.

DOI: 10.1021/cm0101632

Google Scholar

[3] G. De, A. Licciulli, M. Nacucchi, Uniformly dispersed Pr+3 doped silica glass by the sol-gel process, J. Non-Cryst. Solids. 201 (1996) 153-158.

DOI: 10.1016/0022-3093(96)00166-4

Google Scholar

[4] P.M.T. Cavalcante, M. Dondi, G: Guarini, M. Raimondo, G. Baldi, Colour performance of ceramic nano-pigments, Dyes Pigm. 80 (2009) 226-232.

DOI: 10.1016/j.dyepig.2008.07.004

Google Scholar

[5] S.K. Biswas, D. Dhak, A. Pathak, P. Prananik, Chemical synthesis of environment-friendly nanosized yellow titanate pigments, Mater. Res. Bull. 43 (2008) 665-675.

DOI: 10.1016/j.materresbull.2007.04.001

Google Scholar

[6] I.S. Ahmed, H.A. Dessouki, A.A. Ali, Synthesis and characterization of new nano-particles as blue ceramic pigment, Spectrochim. Acta, Part A. 71 (2008) 616-620.

DOI: 10.1016/j.saa.2007.12.050

Google Scholar

[7] M. Jansen, H. P. Letschert, Inorganic yellow-red pigments without toxic metals, Nature. 404 (2000) 980-982.

DOI: 10.1038/35010082

Google Scholar

[8] V.D. Luz, M. Prades, H. Beltrán, E. Cordoncillo, Environmental-friendly yellow pigment based on Tb and M (M = Ca or Ba) co-doped Y2O3, J. Eur. Ceram. Soc, 33 (2013) 3359-3368.

DOI: 10.1016/j.jeurceramsoc.2013.05.021

Google Scholar

[9] A. García, M. Llusar, J. Calbo, M. A. Tena and G. Monrós, Low-toxicity red ceramic pigments for porcelainised stoneware from lanthanide–cerianite solid solutions, Green Chem, 3 (2001) 238-242.

DOI: 10.1039/b105830b

Google Scholar

[10] Y. Marinova, J.M. Hohemberger, E. Cordoncillo, P. Escribano, J.B. Carda, Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments, J. Eur. Ceram. Soc, 23 (2003) 213-220.

DOI: 10.1016/s0955-2219(02)00182-6

Google Scholar

[11] V.S. Vishnu, M.L. Reddy, Near-infrared reflecting inorganic pigments based on molybdenum and praseodymium doped yttrium cerate Synthesis, characterization and optical properties, Sol. Energy Mater. Sol. Cells, 95 (2011) 2685-2692.

DOI: 10.1016/j.solmat.2011.05.042

Google Scholar

[12] J.H. Meng, G.Q. Yang, L.M. Yan, X.Y. Wang, Synthesis and characterization of magnetic nanometer pigment Fe3O4, Dyes Pigm, 66 (2005) 109-113.

DOI: 10.1016/j.dyepig.2004.08.016

Google Scholar

[13] S. Ahmadi, A. Aghaei, B.E. Yekta, Synthesis of Y(Al, Cr)O3 red pigments by co-precipitation method and their interactions with glazes, Ceram. Int, 35 (2009) 3485-3488.

DOI: 10.1016/j.ceramint.2009.04.029

Google Scholar

[14] A.F. Osorio, E.P. Villanueva, J.C. Fernaandez, Synthesis of nanosized (Zn1−xCox)Al2O4 spinels New pink ceramic pigments, Mater. Res. Bull, 47 (2012) 445-452.

DOI: 10.1016/j.materresbull.2011.10.024

Google Scholar

[15] M.S. Niasari, M.F. Khouzanim F. Davar, Bright blue pigment CoAl2O4 nanocrystals prepared by modified sol–gel method, J. Sol-Gel Sci. Technol 52 (2009) 321-327.

DOI: 10.1007/s10971-009-2050-y

Google Scholar

[16] S. Chemlal, A. Larbot, M. Persin, J. Sarrazin, M. Sghyar, M. Rafiq, Cobalt spinel CoAl2O4 via sol-gel process elaboration and surface properties, Mater. Res. Bull, 35 (2000) 2515-2523.

DOI: 10.1016/s0025-5408(00)00444-x

Google Scholar

[17] S. Ardizzone, G. Cappelletti, P. Fermo, C. Oliva, M. Scavini, F. Scime`, Synthesis of nanosized (Zn1−xCox)Al2O4 spinels New pink ceramic pigments, J. Phys. Chem. B, 109 (2005) 22112-22119.

DOI: 10.1021/jp054254o

Google Scholar

[18] Z. Chen, E. Shi, W. Li, Y. Zheng, W. Zhong, Hydrothermal synthesis and optical property of nano-sized CoAl2O4 pigment, Mater. Lett, 55 (2002) 281-284.

DOI: 10.1016/s0167-577x(02)00378-6

Google Scholar

[19] G. Wei, J. Qu, Z. Yu, Y. Li, Q. Guo, T. Qi, Mineralizer effects on the synthesis of amorphous chromium hydroxide and chromium oxide green pigment using hydrothermal reduction method, Dyes Pigm, 113 (2015) 487-495.

DOI: 10.1016/j.dyepig.2014.09.021

Google Scholar

[20] H. Fathi, J.P. Kelly, V.R. Vasquez, O.A. Graeve, Ionic Concentration Effects on Reverse Micelle Size and Stability Implications for the Synthesis of Nanoparticles, J. Am. Chem. Soc, 28 (2012) 9267-9274.

DOI: 10.1021/la300586f

Google Scholar