[1]
J.E. Niederhuber, W. Ensminger, J.W. Gyves, M. Liepman, K. Doan, E. Cozzi, Totally implanted venous and arterial access system to replace external catheters in cancer treatment. Surgery 92 (1982) 706–712.
DOI: 10.1016/0002-9343(82)90774-4
Google Scholar
[2]
E. Trindade, M.G. Hofmeister, C, Fornazier, C.F. Cruz, K. Almeida, E.M. Torelly, E.L. Otubo, J. Nogueira, M. Ramos, M.C. Mattos, R G. Silva, W.L. Carvalho. Hospitals Sentinel ANVISA Notifications Technovigilance involving Central Venous Catheters. SINEPS - 2006 and NOTIVISA – (2007).
Google Scholar
[3]
N. Roohpour, A. Moshaverinia, J. Mwasikiewicz, D. Paul, M. Wilks, M. Millar, P. Vadgama, Development of bacterially resistant polyurethane for coating medical devices. Biomedical Materials 7 (2012) 1-10.
DOI: 10.1088/1748-6041/7/1/015007
Google Scholar
[4]
G.A. Richards, A.J. Brink, R. Mclntosh, H.C. Steel, R. Cockeran, Investigation of biofilm formation on a charged intravenous catheter relative to that on a similar but uncharged catheter. Medical Devices: Evidence and Research 7 (2014) 219-224.
DOI: 10.2147/mder.s63449
Google Scholar
[5]
M.J. Dunn, J.L. Jimenez, D. Baumgardner, T. Castro, P.H. Mcmurry, J.N. Smith, Measurements of Mexico City nanoparticle size distributions: observations of new particle formation and growth. Geophysical Research Letters. 31 (2004) 1-4.
DOI: 10.1029/2004gl019483
Google Scholar
[6]
F. Paladini, M. Pollini, A. Tala, P.A. Alifano, A. Sannino, Efficacy of silver treated catheters for haemodialysis in preventing bacterial adhesion. Jounal. of Materials Science: Materials in Medicine 23 (2012) 1983–(1990).
DOI: 10.1007/s10856-012-4674-7
Google Scholar
[7]
U. Samuel, J.P. Guggenbichler, Prevention of catheter-related infections: the potencial of a new nano-silver impregnated catheter. International Journal of Antimicrobial Agents 23 (2004) 75-78.
DOI: 10.1016/j.ijantimicag.2003.12.004
Google Scholar
[8]
D.P. Macwan, N.D. Pragnesh, S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications. Journal of Materials Science 46 (2011) 3669–3686.
DOI: 10.1007/s10853-011-5378-y
Google Scholar
[9]
Y. Yao, Y. Ohko, Y. Sekiguchi, Y.A. Fujishima, Y. Kubota, Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2008; 85B: 453–460.
DOI: 10.1002/jbm.b.30965
Google Scholar
[10]
M.L. Souza Applications of metallic nanocomposites in enhanced photochemical processes: plasmon effects in photocatalysis 177 (2013). Ph.D. Thesis – Graduate Program in Chemistry. Instituto de Química, Universidade de São Paulo.
Google Scholar
[11]
K. Azuma, Y. Tanaka, H. Tsunoda, T. Hirata, T. Ishitani, Effects of Film Variety on the Amounts of Carboxylic Acids from Electron Beam Irradiated Polyethylene film. Agricultural and Biological Chemistry 48 (1984) 2003-(2008).
DOI: 10.1080/00021369.1984.10866432
Google Scholar
[12]
International Atomic Energy Agency. Radiation Safety of Gamma and Electron Irradiation Facilities. Vienna, (1992). (IAEA Safety Series, 107).
Google Scholar
[13]
Biomedical Equipment and Medical-Surgical Products Ltd. Available in: <http: /www. biomedical. ind. br>. Access in: 18 jul. (2010).
Google Scholar
[14]
S.N. White, Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals. Chemical Geology 259 (2009) 240-252.
DOI: 10.1016/j.chemgeo.2008.11.008
Google Scholar
[15]
S. Heilman, L.G.A. Silva in Anais do 12° Congresso Brasileiro de Polímeros, Florianópolis (2013) 1-4.
Google Scholar
[16]
Y. Kawano, Vibrational infrared absorption spectroscopy. In: CANEVAROLO JUNIOR, S. V. (Ed. ). Polymer Characterization Techniques. Sao Paulo, S. P .: Artliber Publishe 2004, pp.17-38.
Google Scholar