Microstructural Study of Thin Films CuFe Obtained by Thermal Evaporation of Nanostructured Milled Powder

Article Preview

Abstract:

Commercial copper and iron powders were used as starting materials. These powders were mechanically alloyed to obtain Cu(100-x) Fex supersaturated mixture. The milling duration was chosen in such a way as to obtain a nanostructured mixture and to form a supersaturated solid solution of CuFe; the powder mixture was used to deposit CuFe on a glass substrate. The elaboration of our films has been carried out using thermal evaporation process (physical vapor deposition) under 1 × 10-6 mbar vacuum from an electrically heated tungsten boat, using the supersaturated solid solution Cu(100-x) Fex powder obtained by mechanical alloying. The films deposition has been done on glass substrates. In this study, we present the composition effect on the structural and magnetic proprieties of Cu(100-x) Fex powder and thin films. The chemical composition, structural and magnetic proprieties of milled powders and thin films were examined by SEM, TEM, XRD, XRF and VSM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-78

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Nowakowska-Langiera, R. Chodun, R. Nietubyca, R. Minikayevc, K. Zdunek, Dependence of the specific features of two PAPVD methods: Impulse Plasma Deposition (IPD) and Pulsed Magnetron Sputtering (PMS) on the structure of Fe–Cu alloy layers, Appl. Surf. Sci. 275 (2013).

DOI: 10.1016/j.apsusc.2013.01.190

Google Scholar

[2] K. Sumiyama and Y. Nakamura, Magnetic properties of metastable crystalline and amorphous Fe alloys produced by RF sputtering, J. Magn Magn Mater. 35 (1983) 219-220.

DOI: 10.1016/0304-8853(83)90500-0

Google Scholar

[3] A. Hernando and P. Crespo, Magnetic properties of mechanically alloyed Fe-Cu, J Magn Magn Mater. 124 (1993) 5-8.

Google Scholar

[4] M. Mojtahedi, M. Goodarzi, M.R. Aboutalebi, M. Ghaffari, V. Soleimanian, Investigation on the formation of Cu–Fe nano crystalline super-saturated solid solution developed by mechanical alloying, J. Alloys Compd. 550 (2013) 380–388.

DOI: 10.1016/j.jallcom.2012.10.112

Google Scholar

[5] Liang-Cai Ma, Jian-Min Zhang, Ke-Wei Xu, Magnetic and electronic properties of Fe/Cu multilayered nanowires: A first-principles investigation, Physica E. 50 (2013) 1–5.

DOI: 10.1016/j.physe.2013.02.020

Google Scholar

[6] L.T. Kong, B.X. Liu, Distinct magnetic states of metastable fcc structured Fe and Fe–Cu alloys studied by ab initio calculations, Journal of Alloys and Compounds. 414 (2006) 36–41.

DOI: 10.1016/j.jallcom.2005.07.032

Google Scholar

[7] R. Lardé, Étude d'alliages granulaires Cu-Fe-Co : corrélation microstructure-comportements magnétiques propriétés magnétorésistives, PhD thesis, Rouen, France, (2005).

Google Scholar

[8] Y. Ueda, S. Ikeda, Y. Mori, H. Zaman, Magnetoresistance and magnetism in Fe-Cu alloys produced by electrodeposition and mechanical alloying methods, Mater. Sci. Eng., A. 217/218 (1996) 371-37.

DOI: 10.1016/s0921-5093(96)10332-4

Google Scholar

[9] L.M. Socolovsky, F.H. Sanchez, Thermal scanning studies of percolated Fe–Cu granular alloys, Mater. Charact. 50 (2003) 123 – 125.

DOI: 10.1016/s1044-5803(03)00078-0

Google Scholar

[10] O. Drbohlav and A. R. Yavari, mechanical alloying and thermal decomposition of ferromagnetic nanocrystalline f. c. c. -Cu50 Fe50, Acta metal, mater. 43 (1995) 1799-1809.

DOI: 10.1016/0956-7151(94)00401-3

Google Scholar

[11] E. Ma, Alloys created between immiscible elements, Prog. Mater Sci. 50 (2005) 413–509.

Google Scholar

[12] J.Z. Jiang, C. Gente, R. Bormann, Mechanical alloying in the Fe– Cu system, Mater. Sci. Eng., A. 242 (1998) 268 – 277.

DOI: 10.1016/s0921-5093(97)00522-4

Google Scholar

[13] D. Martinez-Blanco, P. Gorria, M.J. Pérez, J.A. Blanco, M.A. Gonzaléz, Low temperature neutron diffraction and magnetization of Fe25Cu75solid solutions, J. Non-Cryst. Solids. 353 (2007) 859–861.

DOI: 10.1016/j.jnoncrysol.2006.12.115

Google Scholar

[14] P. Gorria, D. Martinez-Blanc, J.A. Blanco, M.J. Pérez, M.A. Gonzalez, J. Campo, Magnetism and structure of Fe–Cu binary solid solutions obtained by high-energy ball milling, Physica B. 384 (2006) 336–340.

DOI: 10.1016/j.physb.2006.06.038

Google Scholar

[15] Y. Yang, Y. Zhu, Q. Li, Xueming Ma, Y. Dong, G. Wang, S. Wei, Mechanical alloying, fine structure and thermal decomposition of nanocrystalline FCC-Fe60Cu40, Physica B. 293 (2001) 249-259.

DOI: 10.1016/s0921-4526(00)00531-7

Google Scholar

[16] C. Suryanarayana, Mechanical alloying and milling, Prog. Mater Sci. 46 (2001) 1-184.

Google Scholar

[17] W. Laslouni, Contribution à l 'étude du comportement de nanomatériaux Fe-Cu, Cu- Co et Co-Fe-Cu. Elaboration et Caractérisation, Ph.D. thesis, USTHB, Algeria, (2013).

Google Scholar

[18] J.Y. Huang 1, A.Q. He I and Y.K. Wu, Nanocrystalline Cu-Fe solid solutions prepared by mechanical alloying, Nanostruct. Mater. 4 (1994) 1-10.

DOI: 10.1016/0965-9773(94)90122-8

Google Scholar

[19] R. Lardé, J.M. Le Breton, X. Sauvage, Investigation of the chemical homogeneity of Cu80 (Fe, Co)20 powders produced by mechanical milling, J. Alloys Compd. 474 (2009) 52–56.

DOI: 10.1016/j.jallcom.2008.07.027

Google Scholar

[20] J. Eckert, J. C. Holzer, C. E. Krill III, and W. L. Johnson, Thermal stability and grain growth behaviour of mechanically alloyed nanocrystalline FeCu alloys, J. Appl. Phys. 73 (1993) 131-141.

DOI: 10.1063/1.353890

Google Scholar

[21] G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953) 22–31.

DOI: 10.1016/0001-6160(53)90006-6

Google Scholar

[22] E. Botcharova, M. Heilmaier, J. Freudenberger, G. Drew, D. Kudashow, U. Martin, L. Schultz, Supersaturated solid solution of niobium in copper by mechanical alloying, J. Alloys Compd. 351 (2003) 119–125.

DOI: 10.1016/s0925-8388(02)01025-3

Google Scholar

[23] Xia Zhang, Baosheng Wang, Xinxin Xu, Synthesis and magnetic properties of Cu-coated Fe composite nanoparticles, Appl. Surf. Sci. 256 (2010) 4109–4113.

DOI: 10.1016/j.apsusc.2010.01.092

Google Scholar