Synthesis and Oxidizability Study on Mn3O4 Nanoparticles

Article Preview

Abstract:

Sphere-like Mn3O4 nanoparticles were prepared by a simple aqueous precipitation method at 30 °C for 1.5 h with PEG 6000 involved. The as-prepared Mn3O4 nanoparticles extended sphere-like structures with sizes of around 80 nm. The size and shape could be manipulated by changing the species of alkali. Introduction of PEG6000 in the experiments caused the inhibition of crystal growth. The oxidiability of as-prepared Mn3O4 nanoparticles was evaluated by degradation of rhodamine B (RhB). The pH value of the reaction system was major factors to be assessed in the degradation process. After 120 minutes’ reaction, the degradation efficiency can reach 61.3 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-147

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.F. Shen, R.P. Zerger, R.N. Deguzman, S.I. Suib, L. Mccurdy, D.I. Potter, C.I. Oyoung, Manganese oxide octahedral molecular sieves: preparation, characterization, and applications, Science 260 (1993) 511–515.

DOI: 10.1126/science.260.5107.511

Google Scholar

[2] M.C. Bernrad, H.L. Goff, B.B. Thi, Electrochromic reactions in manganese oxides, J. Electrochem. Soc. 140 (1993) 3065–3070.

DOI: 10.1149/1.2220986

Google Scholar

[3] A.H. De Vries, L. Hozoi, R. Broer, Importance of interatomic hole screening in core-level spectroscopy of transition metal oxides: 3 s hole states in MnO, Phys. Rev. B 66 (2002) 035108–035118.

DOI: 10.1103/physrevb.66.035108

Google Scholar

[4] I. Djerdj, D.A.Z. Jagličić, M. Niederberger, Nonaqueous synthesis of manganese oxide nanoparticles, structural characterization, and magnetic properties, J. Phys. Chem. C 111 (2007) 3614–3623.

DOI: 10.1021/jp067302t

Google Scholar

[5] T. Yamashita, A. Vannice, NO Decomposition over Mn2O3 and Mn3O4, J. Catal. 163 (1996) 158–168.

Google Scholar

[6] M.H. Kim, H.Y. Son, G.Y. Kim, K. Park, Y.M. Huh, S. Haam, Redoxable heteronanocrystals functioning magnetic relaxation switch for activatable T1 and T2 dual-mode magnetic resonance imaging, Biomaterials 101 (2016) 121–130.

DOI: 10.1016/j.biomaterials.2016.05.054

Google Scholar

[7] T. Yu, J. Moon, J. Park, Y. Il Park, H.B. Na, B.H. Kim, I.C. Song, W.K. Moon, T. Hyeon, Various-shaped uniform Mn3O4 nanocrystals synthesized at low temperature in air atmosphere, Chem. Mater. 21 (2009) 2272–2279.

DOI: 10.1021/cm900431b

Google Scholar

[8] M. Estrader, A. López-Ortega, S. Estradé, I. V. Golosovsky, G. Salazar-Alvarez, M. Vasilakaki, K. N. Trohidou, M. Varela, D. C. Stanley, M. Sinko, M. J. Pechan, D. J. Keavney, F. Peiró, S. Suriñach, M. D. Baró, J. Nogués, Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles, Nat. Comm. 4 (2013).

DOI: 10.1038/ncomms3960

Google Scholar

[9] X.L. Hao, J.Z. Zhao, Y.L. Li, Y. Zhao, D.C. Ma, L.Z. Li, Mild aqueous synthesis of octahedral Mn3O4 nanocrystals with varied oxidation states, Colloid Surface A 374 (2011) 42–47.

DOI: 10.1016/j.colsurfa.2010.10.048

Google Scholar

[10] K.R. Reddy, R.D. DeLaune, Biogeochemistry of wetlands: science and applications, CRC Press, New York, NY, USA, (2008).

Google Scholar

[11] E.R. Stobhe, B.A.D. Boer, J.W. Geus, The reduction and oxidation behaviour of manganese oxides, Catal. Today 47 (1999) 161–167.

DOI: 10.1016/s0920-5861(98)00296-x

Google Scholar

[12] E.J. Grootendorst, Y. Verbeek, V. Ponec, The role of the Mars and Van Krevelen mechanismin the selective oxidation of nitrosobenzene and the deoxygenation of nitrobenzene on oxidic catalysts, J. Catal. 157 (1995) 706–712.

DOI: 10.1006/jcat.1995.1336

Google Scholar

[13] D. Ma, J. Zhao, Y. Zhao, X. Hao, Y. Lu, An easy synthesis of 1D bismuth nanostructures in acidic solution and their photocatalytic degradation of rhodamine B, Chem. Eng. J. 209 (2012) 273–279.

DOI: 10.1016/j.cej.2012.08.021

Google Scholar

[14] N. Daneshvar, M.A. Behnajady, M. Khayyat Ali Mohammadi, M.S. Seyed Doorraji, UV/H2O2 treatment of rhodamine B in aqueous solution: influence of operational parameters and kinetic modeling, Desalination 230 (2008) 16–26.

DOI: 10.1016/j.desal.2007.11.012

Google Scholar

[15] X. Zhou, H. Yang, C. Wang, X. Mao, Y. Wang, Y. Yang, G. Liu, Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles, J. Phys. Chem. C 114 (2010) 17051–17061.

DOI: 10.1021/jp103816e

Google Scholar

[16] J.B. Fei, Y. Cui, X.H. Yan, W. Qi, Y. Yang, K.W. Wang, Q. He, J.B. Li, Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment, Adv. Mater. 20 (2008) 452–456.

DOI: 10.1002/adma.200701231

Google Scholar

[17] Y. Li, H. Tan, X.Y. Yang, B. Goris, J. Verbeeck, S. Bals, P. Colson, R. Cloots, G. Van Tendeloo, B.L. Su, Well Shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties, Small 7 (2011) 475–483.

DOI: 10.1002/smll.201001403

Google Scholar

[18] A.N. Chowdhury, Md. Shafiul Azam, Md. Aktaruzzaman, A. Rahim, Oxidative and antibacterial activity of Mn3O4, J. Hazard. Mater. 172 (2009) 1229–1235.

DOI: 10.1016/j.jhazmat.2009.07.129

Google Scholar

[19] H. Dhaouadi, A. Madani, F. Touati, Synthesis and spectroscopic investigations of Mn3O4 nanoparticles, Mater. Lett. 64 (2010) 2395–2398.

DOI: 10.1016/j.matlet.2010.07.036

Google Scholar

[20] T. Ozkaya, A. Baykal, H. Kavas, Y. Köseoğlu, M.S. Toprak, A novel synthetic route to Mn3O4 nanoparticles and their magnetic evaluation, Physica B 403 (2008) 3760–3764.

DOI: 10.1016/j.physb.2008.07.002

Google Scholar

[21] W. Seok Seo, H. H. Jo, K. Lee, B. Kim, S. J. Oh, J. T. Park, Size-Dependent Magnetic Properties of Colloidal Mn3O4 and MnO Nanoparticles, Angew. Chem. Int. Ed. 43 (2004) 1115–1117.

DOI: 10.1002/anie.200352400

Google Scholar

[22] S. Rabiei, D.E. Miser, J.A. Lipscomb, K. Saoud, S. Gedevanishvili, F. Rasouli, Conversion of hausmanite (Mn3O4) particles to nano-fibrous manganite (MnOOH) at ambient conditions, J. Mater. Sci. 40 (2005) 4995–4998.

DOI: 10.1007/s10853-005-2497-3

Google Scholar

[23] P. Gibot, L. Laffont, Hydrophilic and hydrophobic nano-sized Mn3O4 particles, J. Solid State Chem. 180 (2007) 695–701.

DOI: 10.1016/j.jssc.2006.11.024

Google Scholar

[24] T. Yu, J. Moon, J. Park, Y. Il Park, H.B. Na, B.H. Kim, I.C. Song, W.K. Moon, T. Hyeon, Various-shaped uniform Mn3O4 nanocrystals synthesized at low temperature in air atmosphere, Chem. Mater. 21 (2009) 2272–2279.

DOI: 10.1021/cm900431b

Google Scholar

[25] Z. Durmus, A. Baykal, H. Kavas, M. Direkçi, M. S. Toprak, Ovalbumin mediated synthesis of Mn3O4, Polyhedron 28 (2009) 2119–2122.

DOI: 10.1016/j.poly.2009.03.026

Google Scholar

[26] D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, S.M. Pawar, C.D. Lokhande, A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application, Appl. Surf. Sci. 256 (2010) 4411–4416.

DOI: 10.1016/j.apsusc.2009.12.057

Google Scholar

[27] A. Moses Ezhil Raj, S. Grace Victoria, V. Bena Jothy, C. Ravidhas, J. Wollschläger, M. Suendorf, M. Neumann, M. Jayachandran, C. Sanjeeviraja, XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique, App. Surf. Sci. 256 (2010).

DOI: 10.1016/j.apsusc.2009.11.051

Google Scholar

[28] X.L. Hao, J.Z. Zhao, Y. Zhao, D.C. Ma, Y. Lu, J.N. Guo, Q. Zeng, Mild aqueous synthesis of urchin-like MnOx hollow nanostructures and their properties for RhB degradation, Chem. Eng. J. 229 (2013) 134–143.

DOI: 10.1016/j.cej.2013.06.007

Google Scholar

[29] J. Zhuang, W. Dai, Q. Tian, Z. Li, L. Xie, J. Wang, P. Liu, Photocatalytic degradation of RhB over TiO2 bilayer films: effect of defects and their location, Langmuir 26 (2010) 9686–9694.

DOI: 10.1021/la100302m

Google Scholar