Synthesis of Poly(Methyl Methacrylate)-Caprolactam-Sericin Nanoparticles and their Reinforcing Effect on Mechanical Properties of Natural Rubber

Article Preview

Abstract:

Two core-shell structure poly methyl methacrylate-caprolactam (PMMA-CPL) and poly methyl methacrylate-caprolactam-sericin (PMMA-CPL-SS) nanoparticles were synthesized by emulsion polymerization. A latex blending process was performed on preparation of natural rubber (NR) blends, NR/PMMA-CPL and NR/PMMA-CPL-SS. Transmission electron microscopy (TEM) images showed that PMMA-CPL and PMMA-CPL-SS nanoparticles covering on the surface of NR particles homogeneously. SEM, AFM, ATR-FTIR and DSC were used to compare the difference between NR/PMMA-CPL-SS and NR/PMMA-CPL. The results showed that addition of SS improved the smoothness and reduced the amount of incompatible particles on the surface of NR/PMMA-CPL-SS film. Due to the introduction of CPL and SS, the number of escaping particles on the surface of NR was decreased during film forming process and the Tg of NR shifted to a higher temperature. The results indicated that the interfacial adhesion and compatibility of PMMA and NR were improved. Mechanical testing showed that PMMA-CPL nanoparticles could improve the mechanical property of NR. When the content of PMMA-CPL-SS was 10%, the tensile strength of NR/PMMA-CPL-SS film was increased by 19.6% compared to NR/PMMA-CPL. Moreover, the NR/PMMA-CPL-SS film exhibited a higher hydrophilic property after modification with PMMA-CPL-SS nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-190

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Wititsuwannakul, K. Rukseree, K. Kanokwiroon. A rubber particle protein specific for Hevea latex lectin binding involved in latex coagulation, J. Phytochemistry. 69 (2008) 1111-1118.

DOI: 10.1016/j.phytochem.2007.12.007

Google Scholar

[2] S. Utara, J. Klinkaewnarong. Sonochemical synthesis of nano-hydroxyapatite using natural rubber latex as a templating agent, J. Ceram Int. 41 (2015) 14860-14867.

DOI: 10.1016/j.ceramint.2015.08.018

Google Scholar

[3] S. Wang, J.H. Liu, Y.X. Wu. Micromorphological characterization and label-free quantitation of small rubber particle protein in natural rubber latex, J. Anal Biochem. 499 (2016) 34-42.

DOI: 10.1016/j.ab.2016.01.015

Google Scholar

[4] E. Kalkornsurapranee, K. Sahakaro, A. Kaesaman. Influence of Reaction Volume on the Properties of Natural Rubber-g-Methyl Methacrylate, J. Elastom Plast. 42 (2010) 17-34.

DOI: 10.1177/0095244309345410

Google Scholar

[5] A. Mahittikul, P. Prasassarakich, G.L. Rempel. Hydrogenation of natural rubber latex in the presence of [Ir(cod)(PCy3)(py)]PF6, J. Mol Catal a-Chem. 297 (2009) 135-141.

DOI: 10.1016/j.molcata.2008.09.006

Google Scholar

[6] S.T. Wang, XH; Sun, JY; Liu, J ; Duan, JC. Sonochemical synthesis of nano-hydroxyapatite using natural rubber latex as a templating agent, J. Appl Polym Sci. 133 (2016).

Google Scholar

[7] W.C. Chen, S.M. Lai, Z.C. Liao. Properties and preparation of olefin block copolymer/thermoplastic polyurethane blends, J. Appl Polym Sci. 133 (2016).

DOI: 10.1002/app.43703

Google Scholar

[8] M.T. Ramesan. Effect of Silica on Uncompatibilized and Compatibilized Styrene Butadiene Rubber and Nitrile Rubber Blends, J. Int J Polym Mater 60. (2011) 1130-1146.

DOI: 10.1080/00914037.2011.553857

Google Scholar

[9] C.C. Ho, M.C. Khew, Y.F. Liew. Surface morphology of asymmetric latex film prepared from blends of natural rubber and poly(methyl methacrylate) latexes, J. Surf Interface Anal. 32 (2001) 133-143.

DOI: 10.1002/sia.1024

Google Scholar

[10] P. Wongthong, C. Nakason, Q.M. Pan. Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride, J. Eur Polym J. 49 (2013) 4035-4046.

DOI: 10.1016/j.eurpolymj.2013.09.009

Google Scholar

[11] C. Nakason, W. Pechurai, K. Sahakaro. Rheological, mechanical and morphological properties of thermoplastic vulcanizates based on NR-g-PMMA/PMMA blends, J. Polym Advan Technol. 16 (2005) 592-599.

DOI: 10.1002/pat.634

Google Scholar

[12] C. Nakason, A. Tobprakhon, A. Kaesarnan. Thermoplastic vulcanizates based on poly(methyl methacrylate)/epoxidized natural rubber blends: Mechanical, thermal, and morphological properties, J. Appl Polym Sci. 98 (2005) 1251-1261.

DOI: 10.1002/app.21908

Google Scholar

[13] C. Nakason, S. Saiwaree, S. Tatun. Rheological, thermal and morphological properties of maleated natural rubber and its reactive blending with poly(methyl methacrylate), J. Polymer Testing. 25 (2006) 656-667.

DOI: 10.1016/j.polymertesting.2006.03.011

Google Scholar

[14] Z. Oommen, S. Thomas. Interfacial activity of natural rubber-g-poly(methyl methacrylate) in incompatible natural rubber/poly(methyl methacrylate) blends, J. Polym Bull. 31 (1993) 623-628.

DOI: 10.1007/bf00297901

Google Scholar

[15] J.Z. Ma, Q.N. Xu, D.G. Gao. Effect of Hydrogen-Bonding Interaction on the Properties of Caprolactam-modified Casein/Waterborne Polyurethane Composite, J. Advanced Materials Research. 160-162 ( 2010) 1090-1094.

DOI: 10.4028/www.scientific.net/amr.160-162.1090

Google Scholar

[16] N. Suzuki, A. Fujimura, T. Nagai. Antioxidative activity of animal and vegetable dietary fibers, J. Biofactors. 21 (2004) 329-333.

DOI: 10.1002/biof.552210164

Google Scholar

[17] P. Aramwit, S. Ekasit, R. Yamdech. The development of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the controlled release of silk sericin, J. Biomed Microdevices. 17 (2015).

DOI: 10.1007/s10544-015-9991-4

Google Scholar

[18] Mahesh N Padamwar, Atmaram P Pawar, Aarti V Daithankar. Silk sericin as a moisturizer: an in vivo study, J. Journal of Cosmetic Dermatology. 4 (2005) 250-257.

DOI: 10.1111/j.1473-2165.2005.00200.x

Google Scholar

[19] J. Sun, X. Tian. Study on Natural Rubber Latex Modified by Silk Grafting, J. CHINA ELASTOMERICS. 21 (2011) 10-15.

Google Scholar

[20] Y. SUN, X. Tian. Chitosan-sericin covalent compounds in the application of the natural rubber latex modification, J. NEW CHEMICAL MATERIALS. 41 (2013) 184-190.

Google Scholar

[21] Y.S. Vygodskii, T.V. Volkova, O.N. Pashkova. Anionic polymerization of epsilon-caprolactam and its copolymerization with omega-dodecanelactam in the presence of aromatic polyimides, J. Polym Sci Ser a+. 48 (2006) 557-562.

DOI: 10.1134/s0965545x06060010

Google Scholar

[22] C.M. Zhou, Y.L. Shi, C.S. Sun. Thin-film composite membranes formed by interfacial polymerization with natural material sericin and trimesoyl chloride for nanofiltration, J. Membrane Sci. 471 (2014) 381-391.

DOI: 10.1016/j.memsci.2014.08.033

Google Scholar

[23] W. Pichayakorn, J. Suksaeree, P. Boonme. Preparation of Deproteinized Natural Rubber Latex and Properties of Films Formed by Itself and Several Adhesive Polymer Blends, J. Ind Eng Chem Res. 51 (2012) 13393-13404.

DOI: 10.1021/ie301985y

Google Scholar

[24] M. Hussein, R. El-Shishtawy, B. Abu-Zied. The impact of cross-linking degree on the thermal and texture behavior of poly(methyl methacrylate), J. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY. 124 (2016) 709-717.

DOI: 10.1007/s10973-016-5240-1

Google Scholar

[25] N.D. Singho, N.A.C. Lah, M.R. Johan. FTIR Studies on Silver-Poly(Methylmethacrylate) Nanocomposites via In-Situ Polymerization Technique, J. Int J Electrochem Sc. 7 (2012) 5596-5603.

DOI: 10.1016/s1452-3981(23)19646-5

Google Scholar

[26] R. Zhao, X. Li, B.L. Sun. Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings, J. Int J Biol Macromol. 68 (2014) 92-97.

DOI: 10.1016/j.ijbiomac.2014.04.029

Google Scholar

[27] K. Nawamawat, J.T. Sakdapipanich, C.C. Ho. Surface nanostructure of Hevea brasiliensis natural rubber latex particles, J. Colloid Surface A. 390 (2011) 157-166.

DOI: 10.1016/j.colsurfa.2011.09.021

Google Scholar

[28] C.C. Ho, M.C. Khew. Low glass transition temperature (T-g) rubber latex film formation studied by atomic force microscopy, J. Langmuir. 16 (2000) 2436-2449.

DOI: 10.1021/la990192f

Google Scholar

[29] E. Laguna-Gutierrez, C. Saiz-Arroyo, J.I. Velasco. Low density polyethylene/silica nanocomposite foams. Relationship between chemical composition, particle dispersion, cellular structure and physical properties, J. Eur Polym J. 81 (2016) 173-185.

DOI: 10.1016/j.eurpolymj.2016.06.001

Google Scholar

[30] L. Thiraphattaraphun, S. Kiatkamjornwong, P. Prasassarakich. Natural rubber-g-methyl methacrylate/poly(methyl methacrylate) blends, J. Appl Polym Sci. 81 (2001) 428-439.

DOI: 10.1002/app.1455

Google Scholar

[31] S. Rolere, S. Liengprayoon, L. Vaysse. Investigating natural rubber composition with Fourier Transform Infrared (FT-IR) spectroscopy: A rapid and non-destructive method to determine both protein and lipid contents simultaneously, J. POLYMER TESTING. 43 (2015).

DOI: 10.1016/j.polymertesting.2015.02.011

Google Scholar

[32] P. Saramolee, N. Lopattananon, K. Sahakaro. Preparation and some properties of modified natural rubber bearing grafted poly(methyl methacrylate) and epoxide groups, J. Eur Polym J. 56 (2014) 1-10.

DOI: 10.1016/j.eurpolymj.2014.04.008

Google Scholar

[33] X.D. She, C.Z. He, Z. Peng. Molecular-level dispersion of graphene into epoxidized natural rubber: Morphology, interfacial interaction and mechanical reinforcement, J. Polymer. 55 (2014) 6803-6810.

DOI: 10.1016/j.polymer.2014.10.054

Google Scholar