Preparation and Characterization of Polysiloxane Modified Graphene Oxide/PMMA Nanocomposites with Non-Convalent Interfaces

Article Preview

Abstract:

Graphene oxide (GO) was modified by polyphenylvinylsiloxane (PPVS) through π-π conjugation interaction. The modified GO/PMMA nanocomposites were prepared via in situ bulk polymerization. The modification of GO was characterized by using Fourier transformed infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Thermal conductivity, thermal stability and mechanical properties of PMMA and its composites were investigated by using TG, heat conduction analysis, and three-point bending strength test, respectively. The results showed that PPVS modified GO was prepared through non-covalent interaction, and composites with non-convalent phase interfaces were also obtained. With the addition of GO-PPVS, the three-point bending strength of GO-PPVS/PMMA increased to about 68 MPa. GO wrapped by PPVS could not form thermal conducting networks at the percolation thresholds. The increasing amount of PPVS prevented the formation of thermal conduction network, and decreased the thermal conductivity of the composites. The thermal stability of the composites was influenced by three main factors, and the total effect of the three factors on thermal stability illustrated a negative trend.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-203

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Park, R. S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4 (2009) 217–224.

Google Scholar

[2] A. K. Geim, Graphene: status and prospects. Science 324 (2009) 1530-1534.

Google Scholar

[3] A. K. Geim, K. S. Novoselov, The rise of graphene. Nat. Mater. 6 (2007) 183-191.

Google Scholar

[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric field in atomically thin carbon films. Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[5] V. Singh, D. Joung, L. Zhai, et al. Graphene based materials: past, present and future. Prog. Mater. Sci. 56 (2011) 1178-1271.

DOI: 10.1016/j.pmatsci.2011.03.003

Google Scholar

[6] R. Verdejo, M. M. Bernal, L. J. Romasanta, et al. Graphene filled polymer nanocomposites. J. Mater. Chem. 21 (2011) 3301-3310.

DOI: 10.1039/c0jm02708a

Google Scholar

[7] J. S. Arellano, Adsorption of Molecular Hydrogen in a Graphene-Carbon Nanotube System. J. Nano Res-Sw. 5 (2009) 201-211.

Google Scholar

[8] K. S. Hu, D. D. Kulkarni, I. Choi, et al. Graphene-polymer nanocomposites for structural and functional applications, Prog. Polym. Sci. 39 (2014) 1934-(1972).

Google Scholar

[9] J. Fu, F. Bernard, S. Multiscale modeling and mechanical properties of zigzag CNT and triple-layer graphene sheet based on Atomic Finite Element Method. J. Nano Res-Sw. 33 (2015) 92-105.

DOI: 10.4028/www.scientific.net/jnanor.33.92

Google Scholar

[10] W. Chen, L. Yan, Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2 (2010) 559-563.

DOI: 10.1039/b9nr00191c

Google Scholar

[11] J. Liu, Z. Wang, J. Chen, X. Wang, Nitrogen-Doped Carbon Nanotubes and Graphene Nanohybrid for Oxygen Reduction Reaction in Acidic, Alkaline and Neutral Solutions. J. Nano Res-Sw. 30 (2015)50-58.

DOI: 10.4028/www.scientific.net/jnanor.30.50

Google Scholar

[12] Y, Geng, S. J. Wang, J. K. Kim, Preparation of graphite nanoplatelets and graphene sheets. J. Colloid. Interface. Sci. 336 (2009) 592-598.

DOI: 10.1016/j.jcis.2009.04.005

Google Scholar

[13] J. W. S. Hummers, R. E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80 (1958) 1339-1339.

DOI: 10.1021/ja01539a017

Google Scholar

[14] D. Li, M. B. Müller, S. Gilje, et al. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3 (2008) 101-105.

Google Scholar

[15] N. A. Kotov, Materials science: carbon sheet solutions. Nature 442 (2006) 254-255.

Google Scholar

[16] M. Cano, U. Khan, T. Sainsbury, et al. Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon 52 (2013) 363-371.

DOI: 10.1016/j.carbon.2012.09.046

Google Scholar

[17] S. Villar-Rodil, J. I. Paredes, A. Martínez-Alonso, et al. Preparation of graphene dispersions and graphene-polymer composites in organic media. J. Mater. Chem. 19 (2009) 3591-3593.

DOI: 10.1039/b904935e

Google Scholar

[18] Y. Liang, D. Wu, X. Feng, et al. Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. 21 (2009) 1679-1683.

DOI: 10.1002/adma.200803160

Google Scholar

[19] H. B. Lee, A. V. Raghu, K. S. Yoon, et al. Preparation and characterization of poly(ethylene oxide)/graphene nanocomposites from an aqueous medium. J. Macromol. Sci. Part B: Phys 49 (2010) 802-809.

DOI: 10.1080/00222341003603701

Google Scholar

[20] M. Fang, K. Wang, H. Lu, et al. Single-layer graphene nanosheets with controlled grafting of polymer chains. J. Mater. Chem. 20 (2010) 1982-(1992).

DOI: 10.1039/b919078c

Google Scholar

[21] A. Lorenzetti, M. Roso, A. Bruschetta, et al. Polyurethane-graphene nanocomposite foams with enhanced thermal insulating properties, Polym. Adv. Technol. 27 (2016) 303-307.

DOI: 10.1002/pat.3635

Google Scholar

[22] J. Fu, P. Zong, L. Chen, et al. A Facile Approach to Covalently Functionalized Graphene Nanosheet Hybrids and Polymer Nanocomposites, Chem. Nanomat. 2 (2016) 830-839.

DOI: 10.1002/cnma.201600131

Google Scholar

[23] D. Cai, J. Jin, K. Yusoh, et al. High performance polyurethane/ functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos. Sci. Technol. 72 (2012) 702-707.

DOI: 10.1016/j.compscitech.2012.01.020

Google Scholar

[24] J. L. Yan, G. Q. Qi, J. Cao, et al. Study on amino-functionalized graphene oxide/poly(methyl methacrylate) nanocomposites. Chem. Lett. 41 (2012) 683-685.

DOI: 10.1246/cl.2012.683

Google Scholar

[25] K. P. Pramoda, H. Hussain, H. M. Koh, et al. Covalent bonded polymer–graphene nanocomposites. J. Polym. Sci. Part A: Polym. Chem. 48 (2010) 4262-4267.

DOI: 10.1002/pola.24212

Google Scholar

[26] J. Yang, X. Yan, M. Wu, et al. Self-assembly between graphene sheets and cationic poly(methyl methacrylate) (PMMA) particles: preparation and characterization of PMMA/graphene composites. J. Nanopart. Res. 14 (2012) 1-9.

DOI: 10.1007/s11051-011-0717-0

Google Scholar

[27] R. Moriche, S. G. Prolongo, M. Sánchez, et al. Morphological changes on graphene nanoplatelets induced during dispersion into an epoxy resin by different methods. Compos. Part B-Eng. 72 (2015) 199-205.

DOI: 10.1016/j.compositesb.2014.12.012

Google Scholar

[28] J. M. Englert, P. Vecera, K. C. Knirsch, et al. Scanning-Raman-microscopy for the statistical analysis of covalently functionalized graphene. ACS Nano 7 (2013) 5472-5482.

DOI: 10.1021/nn401481h

Google Scholar

[29] S. Eigler, C. Dotzer, A. Hirsch, Visualization of defect densities in reduced graphene oxide. Carbon 50 (2012) 3666-3673.

DOI: 10.1016/j.carbon.2012.03.039

Google Scholar

[30] D. C. D. Nath, V. Sahajwalla, Application of fly ash as a catalyst for synthesis of carbon nanotube ribbons. J. Hazard Mater. 192 (2011) 691-697.

DOI: 10.1016/j.jhazmat.2011.05.072

Google Scholar