Grain Size Effect on Mechanical Behavior of Nanocrystalline Alloy Films

Article Preview

Abstract:

The effect of grain size in nanocrystalline alloys is difficult to analyze because challenges of controlling a number of other microstructure factors. This paper designed and prepared a series of multilayered films with Al-Zr crystalline layers of different thickness but with amorphous layers of identical thickness. In these multilayered films, the heights of columnar crystals in crystalline layers were controlled from 5 to 160 nm and their diameters were kept at 10 to 15 nm, independent of their heights. This design achieved the control of grain size, independent from other microstructure factors. The analysis of mechanical properties of these multilayered films showed that the inverse Hall-Petch phenomenon also exists in Al-Zr nanocrystalline alloys. The critical grain sizes of deviation from the Hall-Petch relationship and the inverse Hall-Petch phenomenon are approximately 40 nm and 10 nm respectively. These mechanical behaviors of nanocrystalline alloys are similar to those reported in pure metals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

204-210

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Schiotz, F.D. Di Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature 391 (1998) 561-563.

DOI: 10.1038/35328

Google Scholar

[2] V. Swygenhoven, P.A. Derlet, Grain-boundary sliding in nanocrystalline fcc metals, Phys Rev B. 64 (2001) 2241051-9.

DOI: 10.1103/physrevb.64.224105

Google Scholar

[3] J.W. Cahn, Y. Mishin, A. Suzuki, Coupling grain boundary motion to shear deformation, Acta Mater. 54 (2006) 4953-4975.

DOI: 10.1016/j.actamat.2006.08.004

Google Scholar

[4] J.W. Cahn, J.E. Taylor, A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation, Acta Mater. 52 (2004) 4887-4898.

DOI: 10.1016/j.actamat.2004.02.048

Google Scholar

[5] M. Legros, D.S. Gianola, K.J. Hemker, In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films, Acta Mater. 56 (2008) 3380-3393.

DOI: 10.1016/j.actamat.2008.03.032

Google Scholar

[6] Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, B. Schmitt, Plastic deformation with reversible peak broadening in nanocrystalline nickel, Science 304 (2004) 273-276.

DOI: 10.1126/science.1095071

Google Scholar

[7] M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang, X.M. Cheng, Deformation twinning in nanocrystalline aluminum, Science 300 (2003) 1275-1277.

DOI: 10.1126/science.1083727

Google Scholar

[8] S. Cheng, J.A. Spencer, W.W. Milligan, Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals, Acta Mater. 51 (2003) 4505-4518.

DOI: 10.1016/s1359-6454(03)00286-6

Google Scholar

[9] C.C. Koch, R.O. Scattergood, K.A. Darling, J.E. Semones, Stabilization of nanocrystalline grain sizes by solute additions, J Mater Sci. 43 (2008) 7264-7272.

DOI: 10.1007/s10853-008-2870-0

Google Scholar

[10] J. Weissmuller, Alloy effects in nanostructures, Nanostruct Mater. 3 (1993) 261-272.

Google Scholar

[11] H.Q. Li, F. Ebrahimi, An investigation of thermal stability and microhardness of electrodeposited nanocrystalline nickel-21% iron alloys, Acta Mater. 51 (2003) 3905-3913.

DOI: 10.1016/s1359-6454(03)00215-5

Google Scholar

[12] T. Shanmugasundaram, M. Heilmaier, B.S. Murty, V.S. Sarma, On the Hall–Petch relationship in a nanostructured Al–Cu alloy, Mater. Sci. Eng. A. 527 (2010) 7821-7825.

DOI: 10.1016/j.msea.2010.08.070

Google Scholar

[13] H. Bahmanpour, K.M. Youssef, J. Horky, D. Setman, M.A. Atwater, M.J. Zehetbauer, R.O. Scattergood, C.C. Koch, Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy, Acta Mater. 60 (2012) 3340-3349.

DOI: 10.1016/j.actamat.2012.02.036

Google Scholar

[14] C.A. Schuh, T.G. Nieh, H. Iwasaki, The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni, Acta Mater. 51 (2003) 431-443.

DOI: 10.1016/s1359-6454(02)00427-5

Google Scholar

[15] H.Q. Sun, Y.N. Shi, An investigation on Hall-Petch relationship in electrodeposited nanocrystalline Cu-Ni-P alloys, J. Mater. Sci. Technol. 25 (2009) 347-350.

Google Scholar

[16] A. Giga, Y. Kimoto, Y. Takigawa K. Higashi, Demonstration of an inverse Hall–Petch relationship in electrodeposited nanocrystalline Ni–W alloys through tensile testing, Scripta Mater. 55 (2006) 143-146.

DOI: 10.1016/j.scriptamat.2006.03.047

Google Scholar

[17] T.D. Shen, R.B. Schwarz, S. Feng, J.G. Swadener, J.Y. Huang, M. Tang, J. Z Zhang, S.C. Vogel, Y. S Zhao, Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall–Petch relation, Acta Mater. 55 (2007) 5007-5013.

DOI: 10.1016/j.actamat.2007.05.018

Google Scholar

[18] B.Y. Ma, K.C. Shi, H.L. Shang, A.M. Zhang, R.B. Li, G.Y. Li, An improved preparation method for cross-sectional TEM specimens of films deposited on metallic substrates, Microsc. Res. Tech. 79 (2016) 276-279.

DOI: 10.1002/jemt.22627

Google Scholar

[19] J.W. Tian, Z.H. Han, Q.X. Lai, X.J. Yu, G.Y. Li, M.Y. Gu, Two-step penetration: a reliable method for the measurement of mechanical properties of hard coatings, Surf. Coat. Tech. 176 (2004) 267-271.

DOI: 10.1016/s0257-8972(03)00772-2

Google Scholar

[20] Ohring M, The Materials Science of Thin Films, 2nd Ed. 2001. P499.

Google Scholar

[21] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation, Nature mater. 3 (2004) 43-47.

DOI: 10.1038/nmat1035

Google Scholar

[22] S. Cheng, J.A. Spencer, W.W. Milligan, Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals, Acta Mater. 51 (2003) 4505-4518.

DOI: 10.1016/s1359-6454(03)00286-6

Google Scholar

[23] V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter, Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation, Acta Mater. 49 (2001) 2713-2722.

DOI: 10.1016/s1359-6454(01)00167-7

Google Scholar

[24] V. Swygenhoven H, M. Spaczer, A. Caro, Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni, Acta Mater. 47 (1999) 3117-3126.

DOI: 10.1016/s1359-6454(99)00109-3

Google Scholar

[25] T . Chookajorn, H. A. Murdoch, C. A. Schuh, Design of stable nanocrystalline alloys, Science 337 (2012) 951-954.

DOI: 10.1126/science.1224737

Google Scholar

[26] T.J. Rupert, D.S. Gianola, Y. Gan, K.J. Hemker, Experimental observations of stress-driven grain boundary migration, Science 326 (2009) 1686-1690.

DOI: 10.1126/science.1178226

Google Scholar

[27] A . Giga, Y. Kimoto, Y. Takigawa, K. Higashi, Demonstration of an inverse Hall–Petch relationship in electrodeposited nanocrystalline Ni–W alloys through tensile testing, Scripta Mater. 55 (2006) 143-146.

DOI: 10.1016/j.scriptamat.2006.03.047

Google Scholar

[28] Z. Quan, Y. Wang, I. T. Bae, W. S. Loc, C. Wang, Z. Wang, J. Fang, Reversal of Hall–Petch effect in structural stability of PbTe nanocrystals and sssociated variation of phase transformation, Nano Lett. 11 (2011) 5531-5536.

DOI: 10.1021/nl203409s

Google Scholar

[29] T.J. Rupert, J. C. Trenkle, C. A. Schuh, Enhanced solid solution effects on the strength of nanocrystalline alloys, Acta Mater. 59 (2011) 1619-1631.

DOI: 10.1016/j.actamat.2010.11.026

Google Scholar

[30] C.E. Carlton, P.J. Ferreira, What is behind the inverse Hall–Petch effect in nanocrystalline materials, Acta Mater. 55 (2007) 3749-3756.

DOI: 10.1016/j.actamat.2007.02.021

Google Scholar