[1]
L.N. Wang, F.M. Meng, K.K. Li, F. Lu, Characterization and optical properties of pole-like nano-CeO2 synthesized by a facile hydrothermal method, Appl. Surf. Sci. 286 (2013) 269-274.
DOI: 10.1016/j.apsusc.2013.09.067
Google Scholar
[2]
B. Xu, Q.T. Zhang, S. S Yuan, M. Zhang, T. Ohno, Morphology control and characterization of broom-like porous CeO2, Chem. Eng. J. 260 (2015) 126-132.
DOI: 10.1016/j.cej.2014.09.001
Google Scholar
[3]
R.C. Rao, M. Yang, C.S. Li, H.Z. Dong, S. Fang, A.M. Zhang, A facile synthesis for hierarchical porous CeO2 nanobundles and their superior catalytic performance for CO oxidation, J. Mater. Chem. A 3 (2015) 782-788.
DOI: 10.1039/c4ta03875d
Google Scholar
[4]
D.S. Zhang, X.J. Du, L.Y. Shi, R.H. Gao, Shape-controlled synthesis and catalytic application of ceria nanomaterials, Dalton Trans. 41 (2012) 14455-14475.
DOI: 10.1039/c2dt31759a
Google Scholar
[5]
R.J. Qi, Y.J. Zhu, G.F. Cheng, Y.H. Huang, Sonochemical synthesis of single-crystalline CeOHCO3 rods and their thermal conversion to CeO2 rods, Nanotechnology 16 (2005) 2502-2506.
DOI: 10.1088/0957-4484/16/11/006
Google Scholar
[6]
J. Qi, K. Zhao, G.D. Li, Y. Gao, H.J. Zhao, R.B. Yu, Z.Y. Tang, Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation, Nanoscale 6 (2014) 4072-4077.
DOI: 10.1039/c3nr06822f
Google Scholar
[7]
N. Izu, T. Itoh, M. Nishibori, I. Matsubara, W. Shin, Effects of noble metal addition on response of ceria thick film CO sensors, Sens. Actuators B 171 (2012) 350-353.
DOI: 10.1016/j.snb.2012.04.058
Google Scholar
[8]
Z.L. Zhan, S.A. Bamett, An octane-fueled solid oxide fuel cell, Science, 308(2005) 844-847.
DOI: 10.1126/science.1109213
Google Scholar
[9]
F.M. Meng, L.N. Wang, J.B. Cui, Controllable synthesis and optical properties of nano-CeO2 via a facile hydrothermal route, J. Alloy Compd. 556 (2013) 102-108.
DOI: 10.1016/j.jallcom.2012.12.096
Google Scholar
[10]
S. Letichevsky , C.A. Tellez , R.R.D. Avillez , M.I.P.D. Silva , M.A. Fraga , L.G. Appel, Obtaining CeO2-ZrO2 mixed oxides by coprecipitation: role of preparation conditions, Appl. Catal. B-Environ. 58 (2005) 203–210.
DOI: 10.1016/j.apcatb.2004.10.014
Google Scholar
[11]
J.Y. Bai, Z.D. Xu, Y.F. Zheng, H.Y. Yin, Shape control of CeO2 nanostructure materials in microemulsion systems, Mater. Lett. 60 (2006) 1287-1290.
DOI: 10.1016/j.matlet.2005.11.016
Google Scholar
[12]
H.Y. Xiao, Z.H. Ai, L.Z. Zhang, Nonaqueous sol-gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment, J. Phys. Chem. C 113 (2009) 16625-16630.
DOI: 10.1021/jp9050269
Google Scholar
[13]
C. Paun, O.V. Safonova, J. Szlachetko, P.M. Abdala, M. Nachtegaal, J. Sa, E. Kleymenov, A. Cervellino, F. Krumeich, J.A.V. Bokhoven, Polyhedral CeO2 nanoparticles: size-dependent geometrical and electronic structure, J. Phys. Chem. C 116 (2012).
DOI: 10.1021/jp300342b
Google Scholar
[14]
Q.H. Bo, F.M. Meng, L.N. Wang, Facile hydrothermal synthesis of CeO2 nano-octahedrons and their magnetic properties, Mater. Lett. 133 (2014) 216-219.
DOI: 10.1016/j.matlet.2014.07.052
Google Scholar
[15]
Y. Chen, C.J. Qiu, C.L. Chen, X.F. Fan, S.B. Xu, W.W. Guo, Z.C. Wang, Facile synthesis of ceria nanospheres by Ce(OH)CO3 precursors, Mater. Lett. 122 (2014) 90-93.
DOI: 10.1016/j.matlet.2014.01.178
Google Scholar
[16]
Y.J. Cho, H.M. Jang, K. Lee, D.R. Kim, Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance, Appl. Surf. Sci. 340 (2015) 96-101.
DOI: 10.1016/j.apsusc.2015.02.138
Google Scholar
[17]
J.F. Gong, F.M. Meng, X. Yang, Z.H. Fan, H.J. Li, Controlled hydrothermal synthesis of triangular CeO2 nanosheets and their formation mechanism and optical properties, J. Alloy Compd. 689 (2016) 606-616.
DOI: 10.1016/j.jallcom.2016.08.030
Google Scholar
[18]
W. Liu, L.J. Feng, C. Zhang, H.X. Yang, J.X. Guo, X.F. Liu, X.Y. Zhang, Y.Z. Yang, A facile hydrothermal synthesis of 3D flowerlike CeO2 via a cerium oxalate precursor, J. Mater. Chem. A 1 (2013) 6942-6948.
DOI: 10.1039/c3ta10487g
Google Scholar
[19]
H. Li, A. Petz, H. Yan, J.C. Nie, S. Kunsagi-Mate, Morphology dependence of raman properties of carbon nanotube layers formed on nanostructured CeO2 films, J. Phys. Chem. C 115 (2011) 1480-1483.
DOI: 10.1021/jp108023f
Google Scholar
[20]
H.R. Tan, J.P.Y. Tan, C. Boothroyd, T.W. Hansen, Y.L. Foo, M. Lin, Experimental evidence for self-assembly of CeO2 particles in solution: formation of single-crystalline porous CeO2 nanocrystals, J. Phys. Chem. C 116 (2012) 242-247.
DOI: 10.1021/jp208340q
Google Scholar
[21]
A.C. Cabral, L.S. Cavalcante, R.C. Deus, E. Longo, A.Z. Simões, F. Moura, Photoluminescence properties of praseodymium doped cerium oxide nanocrystals, Ceram. Int. 40 (2014) 4445-4453.
DOI: 10.1016/j.ceramint.2013.08.117
Google Scholar
[22]
F.M. Meng, J.F. Gong, Z.H. Fan, H.J. Li, J.T. Yuan, Hydrothermal synthesis and mechanism of triangular prism-like monocrystalline CeO2 nanotubes via a facile template-free hydrothermal route, Ceram. Int. 42 (2016) 4700-4708.
DOI: 10.1016/j.ceramint.2015.11.123
Google Scholar
[23]
H.F. Xu, H. Li, The effect of Co-doped on the room-temperature ferromagnetism of CeO2 nanorods, J. Magn. Magn. Mater. 377(2015)272-275.
DOI: 10.1016/j.jmmm.2014.10.124
Google Scholar
[24]
J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Šćepanović, G. Branković, Comparative study of CeO2 nanopowders obtained by the hydrothermal method from various precursors, Ceram. Int. 41 (2015) 1970-(1979).
DOI: 10.1016/j.ceramint.2014.08.122
Google Scholar
[25]
A. Younis, D. Chu, Y.V. Kaneti, S. Li, Tuning the surface oxygen concentration of {111} surrounded ceria nanocrystals for enhanced photocatalytic activities, Nanoscale 8 (2016) 378-387.
DOI: 10.1039/c5nr06588g
Google Scholar
[26]
H.L. Lin, C.Y. Wu, R.K. Chiang, Facile synthesis of CeO2 nanoplates and nanorods by.
Google Scholar
[100]
oriented growth, J. Colloid. Interf. Sci. 341 (2010) 12-17.
Google Scholar
[27]
X. Lu, X. Li, F. Chen, C. Ni, Z. Chen, Hydrothermal synthesis of prism-like mesocrystal CeO2, J. Alloy Compd. 476 (2009) 958-962.
DOI: 10.1016/j.jallcom.2008.09.198
Google Scholar
[28]
X.H. Lu, D.Z. Zheng, P. Zhang, C.L. Liang, P. Liu, Y.X. Tong, Facile synthesis of free-standing CeO2 nanorods for photoelectrochemical applications, Chem. Commun. 46 (2010) 7721-7723.
DOI: 10.1039/c0cc01854f
Google Scholar
[29]
E. Shoko, M.F. Smith, R.H. McKenzie, Charge distribution near bulk oxygen vacancies in cerium oxides, J. Phys: Condens. Mater. 22 (2010) 223201-223214.
DOI: 10.1088/0953-8984/22/22/223201
Google Scholar
[30]
B. Choudhury, A. Choudhury, Ce3+ and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles, Mater. Chem. Phys. 131 (2012) 666-671.
DOI: 10.1016/j.matchemphys.2011.10.032
Google Scholar
[31]
D. Jiang, W.Z. Wang, E. Gao, S.M. Sun, L. Zhang, Highly selective defect-mediated photochemical CO2 conversion over fluorite ceria under ambient conditions, Chem. Commun. 50 (2014) 2005-(2007).
DOI: 10.1039/c3cc47806h
Google Scholar
[32]
S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, and S Maensiri, Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route, Mater. Chem. Phys. 115 (2009).
DOI: 10.1016/j.matchemphys.2008.12.031
Google Scholar
[33]
S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P.L. Anderson, S. Seraphin, Egg white synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles, Cryst. Growth Des. 7 (2007) 950-955.
DOI: 10.1021/cg0608864
Google Scholar
[34]
G.F. Wang, Q.Y. Mu, T. Chen, Y. D Wang, Synthesis, characterization and photoluminescence of CeO2 nanoparticles by a facile method at room temperature, J. Alloy Compd. 493 (2010) 202-207.
DOI: 10.1016/j.jallcom.2009.12.053
Google Scholar
[35]
C.W. Sun, H. Li, L.Q. Chen, Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction, J. Phys. Chem. Solids 68 (2007) 1785-1790.
DOI: 10.1016/j.jpcs.2007.05.005
Google Scholar
[36]
C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, L.Q. Chen, Controlled synthesis of CeO2 nanorods by a solvothermal method, Nanotechnology 16 (2005) 1454-1463.
DOI: 10.1088/0957-4484/16/9/006
Google Scholar
[37]
J.F. Gong, F.M. Meng, Z.H. Fan, H.J. Li, Z. Du, Template-free controlled hydrothermal synthesis for monodisperse flowerlike porous CeO2 microspheres and their superior catalytic reduction of NO with NH3, J. Alloy Compd. 690 (2017) 677-687.
DOI: 10.1016/j.jallcom.2016.08.183
Google Scholar