Hydrothermal Synthesis and Optical Properties of Ellipsoid-Like CeO2 Nanostructures with Rugged Surface and Many Pores

Article Preview

Abstract:

The almost monodisperse ellipsoid-like CeO2 nanostructures with rugged surface and many pores have been synthesized by a smart hydrothermal technique. Various techniques have been applied to investigate the CeO2 nanostructures, including XRD, SEM, XPS, Raman scattering, UV-vis and Photoluminescence (PL) spectra. The results showed that the ellipsoid-like CeO2 have a fluorite cubic structure and there are Ce3+ ions and oxygen vacancies existing in surface of samples. It is also found that there is a red-shifting in the band gap of the materials compared to bulk one, which is mainly attributed to the influences of the Ce3+ ions, oxygen vacancies and the morphology of the materials. The photoluminescence measurement indicated that the ellipsoid-like CeO2 samples exhibit excellent optical properties at room temperature, which can be reasonably explained for the influences of the concentration of oxygen vacancies and Ce3+ ions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-103

Citation:

Online since:

July 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.N. Wang, F.M. Meng, K.K. Li, F. Lu, Characterization and optical properties of pole-like nano-CeO2 synthesized by a facile hydrothermal method, Appl. Surf. Sci. 286 (2013) 269-274.

DOI: 10.1016/j.apsusc.2013.09.067

Google Scholar

[2] B. Xu, Q.T. Zhang, S. S Yuan, M. Zhang, T. Ohno, Morphology control and characterization of broom-like porous CeO2, Chem. Eng. J. 260 (2015) 126-132.

DOI: 10.1016/j.cej.2014.09.001

Google Scholar

[3] R.C. Rao, M. Yang, C.S. Li, H.Z. Dong, S. Fang, A.M. Zhang, A facile synthesis for hierarchical porous CeO2 nanobundles and their superior catalytic performance for CO oxidation, J. Mater. Chem. A 3 (2015) 782-788.

DOI: 10.1039/c4ta03875d

Google Scholar

[4] D.S. Zhang, X.J. Du, L.Y. Shi, R.H. Gao, Shape-controlled synthesis and catalytic application of ceria nanomaterials, Dalton Trans. 41 (2012) 14455-14475.

DOI: 10.1039/c2dt31759a

Google Scholar

[5] R.J. Qi, Y.J. Zhu, G.F. Cheng, Y.H. Huang, Sonochemical synthesis of single-crystalline CeOHCO3 rods and their thermal conversion to CeO2 rods, Nanotechnology 16 (2005) 2502-2506.

DOI: 10.1088/0957-4484/16/11/006

Google Scholar

[6] J. Qi, K. Zhao, G.D. Li, Y. Gao, H.J. Zhao, R.B. Yu, Z.Y. Tang, Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation, Nanoscale 6 (2014) 4072-4077.

DOI: 10.1039/c3nr06822f

Google Scholar

[7] N. Izu, T. Itoh, M. Nishibori, I. Matsubara, W. Shin, Effects of noble metal addition on response of ceria thick film CO sensors, Sens. Actuators B 171 (2012) 350-353.

DOI: 10.1016/j.snb.2012.04.058

Google Scholar

[8] Z.L. Zhan, S.A. Bamett, An octane-fueled solid oxide fuel cell, Science, 308(2005) 844-847.

DOI: 10.1126/science.1109213

Google Scholar

[9] F.M. Meng, L.N. Wang, J.B. Cui, Controllable synthesis and optical properties of nano-CeO2 via a facile hydrothermal route, J. Alloy Compd. 556 (2013) 102-108.

DOI: 10.1016/j.jallcom.2012.12.096

Google Scholar

[10] S. Letichevsky , C.A. Tellez , R.R.D. Avillez , M.I.P.D. Silva , M.A. Fraga , L.G. Appel, Obtaining CeO2-ZrO2 mixed oxides by coprecipitation: role of preparation conditions, Appl. Catal. B-Environ. 58 (2005) 203–210.

DOI: 10.1016/j.apcatb.2004.10.014

Google Scholar

[11] J.Y. Bai, Z.D. Xu, Y.F. Zheng, H.Y. Yin, Shape control of CeO2 nanostructure materials in microemulsion systems, Mater. Lett. 60 (2006) 1287-1290.

DOI: 10.1016/j.matlet.2005.11.016

Google Scholar

[12] H.Y. Xiao, Z.H. Ai, L.Z. Zhang, Nonaqueous sol-gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment, J. Phys. Chem. C 113 (2009) 16625-16630.

DOI: 10.1021/jp9050269

Google Scholar

[13] C. Paun, O.V. Safonova, J. Szlachetko, P.M. Abdala, M. Nachtegaal, J. Sa, E. Kleymenov, A. Cervellino, F. Krumeich, J.A.V. Bokhoven, Polyhedral CeO2 nanoparticles: size-dependent geometrical and electronic structure, J. Phys. Chem. C 116 (2012).

DOI: 10.1021/jp300342b

Google Scholar

[14] Q.H. Bo, F.M. Meng, L.N. Wang, Facile hydrothermal synthesis of CeO2 nano-octahedrons and their magnetic properties, Mater. Lett. 133 (2014) 216-219.

DOI: 10.1016/j.matlet.2014.07.052

Google Scholar

[15] Y. Chen, C.J. Qiu, C.L. Chen, X.F. Fan, S.B. Xu, W.W. Guo, Z.C. Wang, Facile synthesis of ceria nanospheres by Ce(OH)CO3 precursors, Mater. Lett. 122 (2014) 90-93.

DOI: 10.1016/j.matlet.2014.01.178

Google Scholar

[16] Y.J. Cho, H.M. Jang, K. Lee, D.R. Kim, Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance, Appl. Surf. Sci. 340 (2015) 96-101.

DOI: 10.1016/j.apsusc.2015.02.138

Google Scholar

[17] J.F. Gong, F.M. Meng, X. Yang, Z.H. Fan, H.J. Li, Controlled hydrothermal synthesis of triangular CeO2 nanosheets and their formation mechanism and optical properties, J. Alloy Compd. 689 (2016) 606-616.

DOI: 10.1016/j.jallcom.2016.08.030

Google Scholar

[18] W. Liu, L.J. Feng, C. Zhang, H.X. Yang, J.X. Guo, X.F. Liu, X.Y. Zhang, Y.Z. Yang, A facile hydrothermal synthesis of 3D flowerlike CeO2 via a cerium oxalate precursor, J. Mater. Chem. A 1 (2013) 6942-6948.

DOI: 10.1039/c3ta10487g

Google Scholar

[19] H. Li, A. Petz, H. Yan, J.C. Nie, S. Kunsagi-Mate, Morphology dependence of raman properties of carbon nanotube layers formed on nanostructured CeO2 films, J. Phys. Chem. C 115 (2011) 1480-1483.

DOI: 10.1021/jp108023f

Google Scholar

[20] H.R. Tan, J.P.Y. Tan, C. Boothroyd, T.W. Hansen, Y.L. Foo, M. Lin, Experimental evidence for self-assembly of CeO2 particles in solution: formation of single-crystalline porous CeO2 nanocrystals, J. Phys. Chem. C 116 (2012) 242-247.

DOI: 10.1021/jp208340q

Google Scholar

[21] A.C. Cabral, L.S. Cavalcante, R.C. Deus, E. Longo, A.Z. Simões, F. Moura, Photoluminescence properties of praseodymium doped cerium oxide nanocrystals, Ceram. Int. 40 (2014) 4445-4453.

DOI: 10.1016/j.ceramint.2013.08.117

Google Scholar

[22] F.M. Meng, J.F. Gong, Z.H. Fan, H.J. Li, J.T. Yuan, Hydrothermal synthesis and mechanism of triangular prism-like monocrystalline CeO2 nanotubes via a facile template-free hydrothermal route, Ceram. Int. 42 (2016) 4700-4708.

DOI: 10.1016/j.ceramint.2015.11.123

Google Scholar

[23] H.F. Xu, H. Li, The effect of Co-doped on the room-temperature ferromagnetism of CeO2 nanorods, J. Magn. Magn. Mater. 377(2015)272-275.

DOI: 10.1016/j.jmmm.2014.10.124

Google Scholar

[24] J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Šćepanović, G. Branković, Comparative study of CeO2 nanopowders obtained by the hydrothermal method from various precursors, Ceram. Int. 41 (2015) 1970-(1979).

DOI: 10.1016/j.ceramint.2014.08.122

Google Scholar

[25] A. Younis, D. Chu, Y.V. Kaneti, S. Li, Tuning the surface oxygen concentration of {111} surrounded ceria nanocrystals for enhanced photocatalytic activities, Nanoscale 8 (2016) 378-387.

DOI: 10.1039/c5nr06588g

Google Scholar

[26] H.L. Lin, C.Y. Wu, R.K. Chiang, Facile synthesis of CeO2 nanoplates and nanorods by.

Google Scholar

[100] oriented growth, J. Colloid. Interf. Sci. 341 (2010) 12-17.

Google Scholar

[27] X. Lu, X. Li, F. Chen, C. Ni, Z. Chen, Hydrothermal synthesis of prism-like mesocrystal CeO2, J. Alloy Compd. 476 (2009) 958-962.

DOI: 10.1016/j.jallcom.2008.09.198

Google Scholar

[28] X.H. Lu, D.Z. Zheng, P. Zhang, C.L. Liang, P. Liu, Y.X. Tong, Facile synthesis of free-standing CeO2 nanorods for photoelectrochemical applications, Chem. Commun. 46 (2010) 7721-7723.

DOI: 10.1039/c0cc01854f

Google Scholar

[29] E. Shoko, M.F. Smith, R.H. McKenzie, Charge distribution near bulk oxygen vacancies in cerium oxides, J. Phys: Condens. Mater. 22 (2010) 223201-223214.

DOI: 10.1088/0953-8984/22/22/223201

Google Scholar

[30] B. Choudhury, A. Choudhury, Ce3+ and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles, Mater. Chem. Phys. 131 (2012) 666-671.

DOI: 10.1016/j.matchemphys.2011.10.032

Google Scholar

[31] D. Jiang, W.Z. Wang, E. Gao, S.M. Sun, L. Zhang, Highly selective defect-mediated photochemical CO2 conversion over fluorite ceria under ambient conditions, Chem. Commun. 50 (2014) 2005-(2007).

DOI: 10.1039/c3cc47806h

Google Scholar

[32] S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, and S Maensiri, Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route, Mater. Chem. Phys. 115 (2009).

DOI: 10.1016/j.matchemphys.2008.12.031

Google Scholar

[33] S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P.L. Anderson, S. Seraphin, Egg white synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles, Cryst. Growth Des. 7 (2007) 950-955.

DOI: 10.1021/cg0608864

Google Scholar

[34] G.F. Wang, Q.Y. Mu, T. Chen, Y. D Wang, Synthesis, characterization and photoluminescence of CeO2 nanoparticles by a facile method at room temperature, J. Alloy Compd. 493 (2010) 202-207.

DOI: 10.1016/j.jallcom.2009.12.053

Google Scholar

[35] C.W. Sun, H. Li, L.Q. Chen, Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction, J. Phys. Chem. Solids 68 (2007) 1785-1790.

DOI: 10.1016/j.jpcs.2007.05.005

Google Scholar

[36] C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, L.Q. Chen, Controlled synthesis of CeO2 nanorods by a solvothermal method, Nanotechnology 16 (2005) 1454-1463.

DOI: 10.1088/0957-4484/16/9/006

Google Scholar

[37] J.F. Gong, F.M. Meng, Z.H. Fan, H.J. Li, Z. Du, Template-free controlled hydrothermal synthesis for monodisperse flowerlike porous CeO2 microspheres and their superior catalytic reduction of NO with NH3, J. Alloy Compd. 690 (2017) 677-687.

DOI: 10.1016/j.jallcom.2016.08.183

Google Scholar