[1]
Iijima, Sumio. Helical microtubules of graphitic carbon., nature 354. 6348 (1991): 56-58.
DOI: 10.1038/354056a0
Google Scholar
[2]
Thostenson, Erik T., Zhifeng Ren, and Tsu-Wei Chou. Advances in the science and technology of carbon nanotubes and their composites: a review., Composites science and technology 61. 13 (2001): 1899-(1912).
DOI: 10.1016/s0266-3538(01)00094-x
Google Scholar
[3]
D. Qian, G.J. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff, Appl. Mech. Rev. 55 (2002) 495.
Google Scholar
[4]
Eringen, A. Cemal. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves., Journal of applied physics 54. 9 (1983): 4703-4710.
DOI: 10.1063/1.332803
Google Scholar
[5]
Zhou, S. J., and Z. Q. Li. Length scales in the static and dynamic torsion of a circular cylindrical micro-bar., Journal of Shandong university of technology 31. 5 (2001): 401-407.
Google Scholar
[6]
N.A. Fleck, J.W. Hutchinson, Adv. Appl. Mech. 33 (1997) 295.
Google Scholar
[7]
Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39 (2002) 2731.
Google Scholar
[8]
L.J. Sudak, J. Appl. Phys. 94 (2003) 7281.
Google Scholar
[9]
Q. Wang, V.K. Varadhan, Smart Mater. Struct. 14 (2005) 281.
Google Scholar
[10]
B.I. Yakobson, C.J. Brabec, J. Bernholc, Phys. Rev. Lett. 76 (1996) 2511.
Google Scholar
[11]
A. Sears, R.C. Batra, Phys. Rev. B 73 (2006) 085410.
Google Scholar
[12]
Reddy, J. N. Nonlocal theories for bending, buckling and vibration of beams., International Journal of Engineering Science 45. 2 (2007): 288-307.
DOI: 10.1016/j.ijengsci.2007.04.004
Google Scholar
[13]
Pradhan, S. C., and G. K. Reddy. Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM., Computational Materials Science 50. 3 (2011): 1052-1056.
DOI: 10.1016/j.commatsci.2010.11.001
Google Scholar
[14]
T. Murmu, S.C. Pradhan, Comput. Mater. Sci. 47 (2010) 721.
Google Scholar
[15]
Kumar, R. and S. Deol, 2016. Vibration characteristics of double-walled carbon nanotubes embedded in an elastic medium using DTM (Differential Transformation Method). Int. J. Eng. Sci. Invent. Res. Dev., Vol. 2 ( 2016).
Google Scholar
[16]
T. Murmu, S.C. Pradhan, Mech. Res. Commun. 36 (2009) 933.
Google Scholar
[17]
S.C. Pradhan, T. Murmu, Comput. Mater. Sci. 47 (2009) 268.
Google Scholar
[18]
S.C. Pradhan, Phys. Lett. A 373 (2009) 4182.
Google Scholar
[19]
S.C. Pradhan, J.K. Phadikar, Struct. Eng. Mech. Int. J. 33 (2009) 193.
Google Scholar
[20]
S.C. Pradhan, A. Sarkar, Struct. Eng. Mech. Int. J. 32 (2009) 811.
Google Scholar
[21]
T. Murmu, S.C. Pradhan, Physica E: Low-Dim. Syst. NanoStruct. 41 (2009) 1628.
Google Scholar
[22]
S.C. Pradhan, T. Murmu, J. Appl. Phys. 105 (2009) 124306.
Google Scholar
[23]
S.C. Pradhan, J.K. Phadikar, G. Karthik, J. Inst. of Eng. (India), Met. Mater. Eng. Div. 90 (2009) 16.
Google Scholar
[24]
T. Murmu, S.C. Pradhan, Physica E: Low-Dim. Syst. NanoStruct. 41 (2009) 1232.
Google Scholar
[25]
S.C. Pradhan, J.K. Phadikar, Phys. Lett. A 373 (2009) 1062.
Google Scholar
[26]
T. Murmu, S.C. Pradhan, J. Appl. Phys. 105 (2009) 064319.
Google Scholar
[27]
J.K. Zhou, Differential Transformation and Its Applications for Electrical Circuits, Huazhong University Press, Wuhan, China, (1986).
Google Scholar
[28]
Ayaz, Fatma. Applications of differential transform method to differential-algebraic equations., Applied Mathematics and Computation 152. 3 (2004): 649-657.
DOI: 10.1016/s0096-3003(03)00581-2
Google Scholar
[29]
A. Arıkog˘lu, Appl. Math. Comput. 168 (2005) 1145.
Google Scholar
[30]
Q. Wang, V.K. Varadhan, S.T. Quek, Phys. Lett. A 357 (2006) 130.
Google Scholar
[31]
C.M. Wang, Y.Y. Zhang, S.S. Ramesh, S. Kitipornchai, J. Phys. D: Appl. Phys. 39 (2006) 3904.
Google Scholar
[32]
Kumar, R. and D. Sumit, Nonlocal buckling analysis of single-walled carbon nanotube using Differential Transform Method (DTM). Int. J. Sci. Res., (2016)Vol 5: 1768-1773.
DOI: 10.21275/v5i3.nov162343
Google Scholar
[33]
Wang, Xueshen, et al. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates., Nano letters 9. 9 (2009): 3137-3141.
DOI: 10.1021/nl901260b
Google Scholar
[34]
Belluci, S. (19 January 2005). Carbon nanotubes: physics and applications,.: 34–47.
Google Scholar
[35]
Reddy, J. N., and S. D. Pang. Nonlocal continuum theories of beams for the analysis of carbon nanotubes., Journal of Applied Physics 103. 2 (2008): 023511.
DOI: 10.1063/1.2833431
Google Scholar