Mechanical Buckling Analysis of Single-Walled Carbon Nanotube with Nonlocal Effects

Article Preview

Abstract:

In this work Differential Transform Method (DTM) is used to study the buckling behavior of the single walled carbon nanotube (SWCNT). The critical buckling load is being found out up to fourth degree accuracy for different boundary conditions, i.e. Clamped-Clamped, Simply Supported at ends, Clamped Hinged, and Clamped Free. Effect of different nonlocal parameters, different L/d ratio on critical buckling load is being discussed. The DTM is implemented for the nonlocal SWCNT analysis and this yields results with high degree of accuracy. Further, present method can be applied to linear and nonlinear problems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-94

Citation:

Online since:

July 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Iijima, Sumio. Helical microtubules of graphitic carbon., nature 354. 6348 (1991): 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] Thostenson, Erik T., Zhifeng Ren, and Tsu-Wei Chou. Advances in the science and technology of carbon nanotubes and their composites: a review., Composites science and technology 61. 13 (2001): 1899-(1912).

DOI: 10.1016/s0266-3538(01)00094-x

Google Scholar

[3] D. Qian, G.J. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff, Appl. Mech. Rev. 55 (2002) 495.

Google Scholar

[4] Eringen, A. Cemal. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves., Journal of applied physics 54. 9 (1983): 4703-4710.

DOI: 10.1063/1.332803

Google Scholar

[5] Zhou, S. J., and Z. Q. Li. Length scales in the static and dynamic torsion of a circular cylindrical micro-bar., Journal of Shandong university of technology 31. 5 (2001): 401-407.

Google Scholar

[6] N.A. Fleck, J.W. Hutchinson, Adv. Appl. Mech. 33 (1997) 295.

Google Scholar

[7] Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39 (2002) 2731.

Google Scholar

[8] L.J. Sudak, J. Appl. Phys. 94 (2003) 7281.

Google Scholar

[9] Q. Wang, V.K. Varadhan, Smart Mater. Struct. 14 (2005) 281.

Google Scholar

[10] B.I. Yakobson, C.J. Brabec, J. Bernholc, Phys. Rev. Lett. 76 (1996) 2511.

Google Scholar

[11] A. Sears, R.C. Batra, Phys. Rev. B 73 (2006) 085410.

Google Scholar

[12] Reddy, J. N. Nonlocal theories for bending, buckling and vibration of beams., International Journal of Engineering Science 45. 2 (2007): 288-307.

DOI: 10.1016/j.ijengsci.2007.04.004

Google Scholar

[13] Pradhan, S. C., and G. K. Reddy. Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM., Computational Materials Science 50. 3 (2011): 1052-1056.

DOI: 10.1016/j.commatsci.2010.11.001

Google Scholar

[14] T. Murmu, S.C. Pradhan, Comput. Mater. Sci. 47 (2010) 721.

Google Scholar

[15] Kumar, R. and S. Deol, 2016. Vibration characteristics of double-walled carbon nanotubes embedded in an elastic medium using DTM (Differential Transformation Method). Int. J. Eng. Sci. Invent. Res. Dev., Vol. 2 ( 2016).

Google Scholar

[16] T. Murmu, S.C. Pradhan, Mech. Res. Commun. 36 (2009) 933.

Google Scholar

[17] S.C. Pradhan, T. Murmu, Comput. Mater. Sci. 47 (2009) 268.

Google Scholar

[18] S.C. Pradhan, Phys. Lett. A 373 (2009) 4182.

Google Scholar

[19] S.C. Pradhan, J.K. Phadikar, Struct. Eng. Mech. Int. J. 33 (2009) 193.

Google Scholar

[20] S.C. Pradhan, A. Sarkar, Struct. Eng. Mech. Int. J. 32 (2009) 811.

Google Scholar

[21] T. Murmu, S.C. Pradhan, Physica E: Low-Dim. Syst. NanoStruct. 41 (2009) 1628.

Google Scholar

[22] S.C. Pradhan, T. Murmu, J. Appl. Phys. 105 (2009) 124306.

Google Scholar

[23] S.C. Pradhan, J.K. Phadikar, G. Karthik, J. Inst. of Eng. (India), Met. Mater. Eng. Div. 90 (2009) 16.

Google Scholar

[24] T. Murmu, S.C. Pradhan, Physica E: Low-Dim. Syst. NanoStruct. 41 (2009) 1232.

Google Scholar

[25] S.C. Pradhan, J.K. Phadikar, Phys. Lett. A 373 (2009) 1062.

Google Scholar

[26] T. Murmu, S.C. Pradhan, J. Appl. Phys. 105 (2009) 064319.

Google Scholar

[27] J.K. Zhou, Differential Transformation and Its Applications for Electrical Circuits, Huazhong University Press, Wuhan, China, (1986).

Google Scholar

[28] Ayaz, Fatma. Applications of differential transform method to differential-algebraic equations., Applied Mathematics and Computation 152. 3 (2004): 649-657.

DOI: 10.1016/s0096-3003(03)00581-2

Google Scholar

[29] A. Arıkog˘lu, Appl. Math. Comput. 168 (2005) 1145.

Google Scholar

[30] Q. Wang, V.K. Varadhan, S.T. Quek, Phys. Lett. A 357 (2006) 130.

Google Scholar

[31] C.M. Wang, Y.Y. Zhang, S.S. Ramesh, S. Kitipornchai, J. Phys. D: Appl. Phys. 39 (2006) 3904.

Google Scholar

[32] Kumar, R. and D. Sumit, Nonlocal buckling analysis of single-walled carbon nanotube using Differential Transform Method (DTM). Int. J. Sci. Res., (2016)Vol 5: 1768-1773.

DOI: 10.21275/v5i3.nov162343

Google Scholar

[33] Wang, Xueshen, et al. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates., Nano letters 9. 9 (2009): 3137-3141.

DOI: 10.1021/nl901260b

Google Scholar

[34] Belluci, S. (19 January 2005). Carbon nanotubes: physics and applications,.: 34–47.

Google Scholar

[35] Reddy, J. N., and S. D. Pang. Nonlocal continuum theories of beams for the analysis of carbon nanotubes., Journal of Applied Physics 103. 2 (2008): 023511.

DOI: 10.1063/1.2833431

Google Scholar