Structural Examination of Multilayer CrAlSiN/AlSiN Coatings Deposited by Cathodic Arc

Abstract:

Article Preview

In this research, the possibility of applying multilayer multielement super hard coatings by Cathodic Arc is investigated. More precisely the structure of the coating consisting of quaternary CrAlSiN and ternary AlSiN layers is examined by electron microscopy, X-ray diffraction and X-ray photoelectron microscopy analytical methods. The as-deposited samples were found to have distinguishable layers. The CrAlSiN layer is characterized by an extra sequence of repeated nanolayers. The AlSiN layer consisted of nanosized grains having a preferential orientation. Finally the surface layer was found to contain a solid solution of CrxAl1-xN, while Si3N4was identified only by XPS most probably due to its amorphous structure.

Info:

Periodical:

Pages:

62-70

DOI:

10.4028/www.scientific.net/JNanoR.48.62

Citation:

D. Chaliampalias et al., "Structural Examination of Multilayer CrAlSiN/AlSiN Coatings Deposited by Cathodic Arc", Journal of Nano Research, Vol. 48, pp. 62-70, 2017

Online since:

July 2017

Export:

Price:

$38.00

* - Corresponding Author

[1] Y. H. Yoo, D. P. Le, J. G. Kim, S. K. Kim, P. V. Vinh, Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3. 5 wt. % NaCl solution, Thin Solid Films, 516 (2008) 3544–3548.

DOI: 10.1016/j.tsf.2007.08.069

[2] J. Vetter, Vacuum arc coatings for tools: potential and application, Surf. Coat. Technol., 76-77 (PART 2) (1995) 719-724.

DOI: 10.1016/0257-8972(95)02499-9

[3] P. Patsalas, C. Charitidis, S. Logothetidis, The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films, Surf. Coat. Technol., 125 (1-3) (2000) 335-340.

DOI: 10.1016/s0257-8972(99)00606-4

[4] K. Sarakinos, S. Kassavetis, P. Patsalas, S. Logothetidis, Structural factors determining the nanomechanical performance of transition metal nitride films, Materials Research Society Symposium Proceedings, 843 art. no. T7. 8 (2005) 311-316.

DOI: 10.1557/proc-843-t7.8

[5] P. W. Shum, Y. F. Xu, Z. F. Zhou, K. Y. Li, Effects of carbon and nitrogen ion implantations on surface and tribological properties of Ti-Al-Si-N coatings, Surf. Eng., 28(2) (2012) 149-154.

DOI: 10.1179/1743294411y.0000000071

[6] B. Warcholinski, A. Gilewicz, Mechanical properties of multilayer TiAlN/CrN coatings deposited by cathodic arc evaporation, Surf. Eng. 27(7) (2011) 291-297.

DOI: 10.1179/026708410x12786785573355

[7] Y-Y. Chang, C-P. Chang, D-Y. Wang, S-M. Yang, W. Wu, High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process J. Alloy Compd., 461 (2008) 336–341.

DOI: 10.1016/j.jallcom.2007.06.084

[8] C. Y. Yu, S. B. Wang, T. B. Li Z. X. Zhang, Tribological behavior of CrAlN coatings at 600°C, Surf. Eng. 29(4) 2013 318-321.

[9] S. Carvalho, F. Vaz, L. Rebouta, D. Schneider, A. Cavaleiro, E. Alves, Elastic properties of (Ti, Al, Si)N nanocomposite films, Surf. Coat. Technol., 142-144 (2001) 110-116.

DOI: 10.1016/s0257-8972(01)01242-7

[10] S. Veprek, M. G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, Different approaches to superhard coatings and nanocomposites, Thin Solid Films, 476(1) (2005) 1-29.

DOI: 10.1016/j.tsf.2004.10.053

[11] D. Chaliampalias, N. Pliatsikas, E. Pavlidou, K. Kolaklieva, R. Kakanakov, N. Vouroutzis, P. Patsalas, E. K. Polychroniadis, K. Chrissafis, G. Vourlias, Compositionally gradient PVD CrAlSiN films, structural examination and oxidation resistance, Surf. Eng., (in press), doi: 10. 1080/02670844. 2016. 1187789.

DOI: 10.1080/02670844.2016.1187789

[12] J. Musil, Hard nanocomposite coatings, Thermal stability, oxidation resistance and toughness, Surf. Coat. Technol., 207 (2012) 50-65.

DOI: 10.1016/j.surfcoat.2012.05.073

[13] P. Hobular, M. Jilek and M. Sima, Present and possible future applications of superhard nanocomposite coatings, Surf. Coat. Technol., 133-134 (2000) 145-151.

DOI: 10.1016/s0257-8972(00)00956-7

[14] Y.H. Cheng,T. Browne, B. Heckerman, E.I. Meletis, Mechanical and tribological properties of nanocomposite TiSiN coatings, Surf. Coat. Technol., 204(14) (2010) 2123-2129.

DOI: 10.1016/j.surfcoat.2009.11.034

[15] Y.H. Cheng, T. Browne, B. Heckerman, C. Bowman, V. Gorokhovsky, E.I. Meletis, Mechanical and tribological properties of TiN/Ti multilayer coating, Surf. Coat. Technol., 205(1) (2010) 146-151.

DOI: 10.1016/j.surfcoat.2010.06.023

[16] Y. X. Wang, S. Zhang, J-W Lee, W. S. Lew, D. Sun, B. Li, Toward hard yet tough CrAlSiN coatings via compositional grading, Surf. Coat. Technol., 231 (2013) 346–352.

DOI: 10.1016/j.surfcoat.2012.03.036

[17] S. Zhang, L. Wang, Q. Wang, M. Li, A superhard CrAlSiN superlattice coating deposited by multi-arc ion plating, I. Microstructure and mechanical properties, Surf. Coat. Technol., 214 (2013) 160–167.

DOI: 10.1016/j.surfcoat.2012.05.144

[18] M. Stuber, V. Schier, Properties and performance of new metastable Ti-B-C-N hard coatings prepared by magnetron sputtering, Surf. Coat. Technol., 74-75 (1995) 833-837.

DOI: 10.1016/0257-8972(95)08281-6

[19] H. Holleck, V. Schier, Multilayer PVD coatings for wear protection, Surf. Coat. Technol., 76-77 (1995) 328-336.

DOI: 10.1016/0257-8972(95)02555-3

[20] http, /www. platit. com/p.80.

[21] PC Powder Diffraction Files, JCPDS-ICDD, (2003).

[22] J.L. Endrino, S. Palacı, M.H. Aguirre, A. Gutierrez, F. Schafers, Determination of the local environment of silicon and the microstructure of quaternary CrAl(Si)N films, ActaMaterialia, 55 (2007) 2129–2135.

DOI: 10.1016/j.actamat.2006.11.014

[23] S. K. Kim, V.V. Le, P.V. Vinh, J. W. Lee, , Effect of cathode arc current and bias voltage on the mechanical properties of CrAlSiN thin films, Surf. Coat. Technol., 202 (2008) 5400–5404.

DOI: 10.1016/j.surfcoat.2008.06.019

[24] I-W Park, D. S. Kang, J.J. Moore, S.C. Kwon, J.J. Rha, K.H. Kim, Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system, Surf. Coat. Technol., 201 (9-11) (2007).

DOI: 10.1016/j.surfcoat.2006.07.118

[25] D. Chaliampalias, N. Pliatsikas, E. Pavlidou, L. Kolaklieva, R. Kakanakov, N. Vouroutzis, P. Patsalas, E.K. Polychroniadis, K. Chrissafis, G. Vourlias, Compositionally gradient PVD CrAlSiN films: structural examination and oxidation resistance, Surf. Eng., 2016 1-7 (in press).

DOI: 10.1080/02670844.2016.1187789

[26] D. Rafaja, M. Dopita, M. Růžička, V. Klemm, D. Heger, G. Schreiber, M. Šíma, Microstructure development in Cr–Al–Si–N nanocomposites deposited by cathodic arc evaporation, Surf. Coat. Technol., 201 (6) (2006) 2835-2843.

DOI: 10.1016/j.surfcoat.2006.05.033

[27] A.O. Eriksson, J.Q. Zhu, N. Ghafoor, M.P. Johansson , J. Sjölen, J. Jensen, M. Odén,L. Hultman, J. Rosén, Layer formation by resputtering in Ti–Si–C hard coatings during large scale cathodic arc deposition, Surf. Coat. Technol., 205 (2011).

DOI: 10.1016/j.surfcoat.2011.02.007

[28] I. Zhirkov, E. Oks, J. Rosen, Effect of N2 and Ar gas on DC arc plasma generation and film composition from Ti-Al compound cathodes, J. Appl. Phys., 117 (2015) 213301.

DOI: 10.1063/1.4921952

[29] L. Rogström, M. P. Johansson, N. Ghafoor, L. Hultman, M. Odén, Influence of chemical composition and deposition conditions on microstructure evolution during annealing of arc evaporated ZrAlN thin films, J. Vac, Sci. Tecnol., 30 (2012) 031504.

DOI: 10.1116/1.3698592

[30] H. Holleck, V. Schier, Multilayer PVD coatings for wear protection, Surf. Coat. Technol., 76–77 (1995) 328-336.

DOI: 10.1016/0257-8972(95)02555-3

[31] S.H. Sheng, R.F. Zhang, S. Vepřek, Decomposition mechanism of Al1−xSixNy solid solution and possible mechanism of the formation of covalent nanocrystalline AlN/Si3N4 nanocomposites, Acta Materialia, 61 (11) (2013) 4226-4236.

DOI: 10.1016/j.actamat.2013.03.048

[32] Trang T. Nguyen, Thao T. Nguyen, G.T. Nguyen, V.V. Le, Effect of the Si content on structure and mechanical properties in Al1-xSixN materials, Vacuum, 129 (2016) 1-8.

DOI: 10.1016/j.vacuum.2016.04.006

[33] S. Zhang, L. Wang, Q. Wang, M. Li, A superhard CrAlSiN superlattice coating deposited by multi-arc ion plating, I. Microstructure and mechanical properties, Surf. Coat. Technol., 214 (2013) 160-167.

DOI: 10.1016/j.surfcoat.2012.05.144

[34] P. Ren, S. Zhu, F. Wang, Characterization and oxidation behavior of a sputtered nanocomposite Ni+CrAlYSiHfN coating, Corrosion, 71(4) (2015) 523-535.

DOI: 10.5006/1492

[35] H.C. Barshilia, B. Deepthi, K.S. Rajam, Deposition and characterization of CrN/Si3N4 and CrAlN/Si3N4 nanocomposite coatings prepared using reactive DC unbalanced magnetron sputtering, Surf. Coat. Technol., 201(24) (2007) 9468-9475.

DOI: 10.1016/j.surfcoat.2007.04.002

[36] T. Polcar, A. Cavaleiro, High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings - Structure and oxidation, Mater. Chem. Phys., 129(1-2) (2011) 196-201.

DOI: 10.1016/j.matchemphys.2011.03.078

[37] D.B. Lee, T.D. Nguyen, S.K. Kim, Air-oxidation of nano-multilayered CrAlSiN thin films between 800 and 1000 °C, Surf. Coat. Technol., 203(9) 2009 1199-1204.

DOI: 10.1016/j.surfcoat.2008.10.011

[38] J. Laube, S. Gutsch, D. Hiller, M. Bruns, C. Kübel, C. Weiss, M. Zacharias, Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition, J. Appl. Phys., 116 (22) (2014).

DOI: 10.1063/1.4904053

In order to see related information, you need to Login.