[1]
E. Biasini, J.A. Turnbaugh, U. Unterberger, D.A. Harris, Prion protein at the crossroads of physiology and disease, Trends Neurosci. 35 (2012) 92–103.
DOI: 10.1016/j.tins.2011.10.002
Google Scholar
[2]
S.B. Prusiner, Prions, Proc. Natl. Acad. Sci. 95 (1998) 13363–13383.
DOI: 10.1073/pnas.95.23.13363
Google Scholar
[3]
L.Y. -L. Lee, R.P. -Y. Chen, Quantifying the Sequence-Dependent Species Barrier between Hamster and Mouse Prions, J. Am. Chem. Soc. 129 (2007) 1644–1652.
DOI: 10.1021/ja0667413
Google Scholar
[4]
M.S. Goldberg, P.T. Lansbury Jr, Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson's disease?, Nat. Cell Biol. 2 (2000) E115–E119.
DOI: 10.1038/35017124
Google Scholar
[5]
D.M. Hartley, D.M. Walsh, C.P. Ye, T. Diehl, S. Vasquez, P.M. Vassilev, D.B. Teplow, D.J. Selkoe, Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons, J. Neurosci. Off. J. Soc. Neurosci. 19 (1999).
DOI: 10.1523/jneurosci.19-20-08876.1999
Google Scholar
[6]
G.S. Jackson, L.L. Hosszu, A. Power, A.F. Hill, J. Kenney, H. Saibil, C.J. Craven, J.P. Waltho, A.R. Clarke, J. Collinge, Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations, Science. 283 (1999).
DOI: 10.1126/science.283.5409.1935
Google Scholar
[7]
K.M. Pan, M. Baldwin, J. Nguyen, M. Gasset, A. Serban, D. Groth, I. Mehlhorn, Z. Huang, R.J. Fletterick, F.E. Cohen, Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins., Proc. Natl. Acad. Sci. U. S. A. 90 (1993).
DOI: 10.1073/pnas.90.23.10962
Google Scholar
[8]
Y. Wang, X. -Y. Qiao, C. -B. Zhao, X. Gao, Z. -W. Yao, L. Qi, C. -Z. Lu, Report on the first Chinese family with Gerstmann-Sträussler-Scheinker disease manifesting the codon 102 mutation in the prion protein gene, Neuropathology. 26 (2006).
DOI: 10.1111/j.1440-1789.2006.00704.x
Google Scholar
[9]
J. de Pedro-Cuesta, M. Glatzel, J. Almazán, K. Stoeck, V. Mellina, M. Puopolo, M. Pocchiari, I. Zerr, H.A. Kretszchmar, J. -P. Brandel, N. Delasnerie-Lauprêtre, A. Alpérovitch, C. Van Duijn, P. Sanchez-Juan, S. Collins, V. Lewis, G.H. Jansen, M.B. Coulthart, E. Gelpi, H. Budka, E. Mitrova, Human transmissible spongiform encephalopathies in eleven countries: diagnostic pattern across time, 1993–2002, BMC Public Health. 6 (2006).
DOI: 10.1186/1471-2458-6-278
Google Scholar
[10]
A. Ladogana, M. Puopolo, E.A. Croes, H. Budka, C. Jarius, S. Collins, G.M. Klug, T. Sutcliffe, A. Giulivi, A. Alperovitch, N. Delasnerie-Laupretre, J. -P. Brandel, S. Poser, H. Kretzschmar, I. Rietveld, E. Mitrova, J. de P. Cuesta, P. Martinez-Martin, M. Glatzel, A. Aguzzi, R. Knight, H. Ward, M. Pocchiari, C.M. van Duijn, R.G. Will, I. Zerr, Mortality from Creutzfeldt–Jakob disease and related disorders in Europe, Australia, and Canada, Neurology. 64 (2005).
DOI: 10.1212/01.wnl.0000160117.56690.b2
Google Scholar
[11]
W. -C. Yang, M.J. Schmerr, R. Jackman, W. Bodemer, E.S. Yeung, Capillary Electrophoresis-Based Noncompetitive Immunoassay for the Prion Protein Using Fluorescein-Labeled Protein A as a Fluorescent Probe, Anal. Chem. 77 (2005) 4489–4494.
DOI: 10.1021/ac050231u
Google Scholar
[12]
P.C. Klohn, L. Stoltze, E. Flechsig, M. Enari, C. Weissmann, A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 11666–11671.
DOI: 10.1073/pnas.1834432100
Google Scholar
[13]
B. Chen, R. Morales, M.A. Barria, C. Soto, Estimating prion concentration in fluids and tissues by quantitative PMCA, Nat. Methods. 7 (2010) 519–520.
DOI: 10.1038/nmeth.1465
Google Scholar
[14]
G.P. Saborio, B. Permanne, C. Soto, Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding, Nature. 411 (2001) 810–813.
DOI: 10.1038/35081095
Google Scholar
[15]
H. Englund, D. Sehlin, A. -S. Johansson, L.N.G. Nilsson, P. Gellerfors, S. Paulie, L. Lannfelt, F.E. Pettersson, Sensitive ELISA detection of amyloid-β protofibrils in biological samples, J. Neurochem. 103 (2007) 334–345.
DOI: 10.1111/j.1471-4159.2007.04759.x
Google Scholar
[16]
M. Varshney, P.S. Waggoner, R.A. Montagna, H.G. Craighead, Prion protein detection in serum using micromechanical resonator arrays, Talanta. 80 (2009) 593–599.
DOI: 10.1016/j.talanta.2009.07.032
Google Scholar
[17]
M. Varshney, P.S. Waggoner, C.P. Tan, K. Aubin, R.A. Montagna, H.G. Craighead, Prion protein detection using nanomechanical resonator arrays and secondary mass labeling, Anal. Chem. 80 (2008) 2141–2148.
DOI: 10.1021/ac702153p
Google Scholar
[18]
F. Fujii, M. Horiuchi, M. Ueno, H. Sakata, I. Nagao, M. Tamura, M. Kinjo, Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy, Anal. Biochem. 370 (2007).
DOI: 10.1016/j.ab.2007.07.018
Google Scholar
[19]
B.M. Coleman, R.M. Nisbet, S. Han, R. Cappai, D.M. Hatters, A.F. Hill, Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence, Biochem. Biophys. Res. Commun. 380 (2009) 564–568.
DOI: 10.1016/j.bbrc.2009.01.120
Google Scholar
[20]
T. Reuter, B.H. Gilroyed, T.W. Alexander, G. Mitchell, A. Balachandran, S. Czub, T.A. McAllister, Prion protein detection via direct immuno-quantitative real-time PCR, J. Microbiol. Methods. 78 (2009) 307–311.
DOI: 10.1016/j.mimet.2009.07.001
Google Scholar
[21]
L. -Y. Zhang, H. -Z. Zheng, Y. -J. Long, C. -Z. Huang, J. -Y. Hao, D. -B. Zhou, CdTe quantum dots as a highly selective probe for prion protein detection: Colorimetric qualitative, semi-quantitative and quantitative detection, Talanta. 83 (2011).
DOI: 10.1016/j.talanta.2010.11.075
Google Scholar
[22]
H. -J. Zhang, H. -Z. Zheng, Y. -J. Long, G. -F. Xiao, L. -Y. Zhang, Q. -L. Wang, M. Gao, W. -J. Bai, Gold nanoparticles as a label-free probe for the detection of amyloidogenic protein, Talanta. 89 (2012) 401–406.
DOI: 10.1016/j.talanta.2011.12.052
Google Scholar
[23]
L. Liang, Y. Long, H. Zhang, Q. Wang, X. Huang, R. Zhu, P. Teng, X. Wang, H. Zheng, Visual detection of prion protein based on color complementarity principle, Biosens. Bioelectron. 50 (2013) 14–18.
DOI: 10.1016/j.bios.2013.06.014
Google Scholar
[24]
S.J. Xiao, P.P. Hu, X.D. Wu, Y.L. Zou, L.Q. Chen, L. Peng, J. Ling, S.J. Zhen, L. Zhan, Y.F. Li, C.Z. Huang, Sensitive Discrimination and Detection of Prion Disease-Associated Isoform with a Dual-Aptamer Strategy by Developing a Sandwich Structure of Magnetic Microparticles and Quantum Dots, Anal. Chem. 82 (2010).
DOI: 10.1021/ac101865s
Google Scholar
[25]
X.D. Hoa, A.G. Kirk, M. Tabrizian, Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress, Biosens. Bioelectron. 23 (2007) 151–160.
DOI: 10.1016/j.bios.2007.07.001
Google Scholar
[26]
B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing, Sens. Actuators. 4 (1983) 299–304.
DOI: 10.1016/0250-6874(83)85036-7
Google Scholar
[27]
C. Situ, M.H. Mooney, C.T. Elliott, J. Buijs, Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis, TrAC Trends Anal. Chem. 29 (2010) 1305–1315.
DOI: 10.1016/j.trac.2010.09.003
Google Scholar
[28]
K.S. Lee, M. Lee, K.M. Byun, I.S. Lee, Surface plasmon resonance biosensing based on target-responsive mobility switch of magnetic nanoparticles under magnetic fields, J. Mater. Chem. 21 (2011) 5156–5162.
DOI: 10.1039/c0jm03770b
Google Scholar
[29]
A. Liang, Q. Liu, G. Wen, Z. Jiang, The surface-plasmon-resonance effect of nanogold/silver and its analytical applications, TrAC Trends Anal. Chem. 37 (2012) 32–47.
DOI: 10.1016/j.trac.2012.03.015
Google Scholar
[30]
J. Wang, A. Munir, Z. Zhu, H.S. Zhou, Magnetic Nanoparticle Enhanced Surface Plasmon Resonance Sensing and Its Application for the Ultrasensitive Detection of Magnetic Nanoparticle-Enriched Small Molecules, Anal. Chem. 82 (2010) 6782–6789.
DOI: 10.1021/ac100812c
Google Scholar
[31]
B. Wang, Z. Lou, B. Park, Y. Kwon, H. Zhang, B. Xu, Surface conformations of an anti-ricin aptamer and its affinity for ricin determined by atomic force microscopy and surface plasmon resonance, Phys. Chem. Chem. Phys. PCCP. (2014).
DOI: 10.1039/c4cp03190c
Google Scholar
[32]
B. Wang, C. Guo, Z. Lou, B. Xu, Following the aggregation of human prion protein on Au (111) surface in real-time, Chem. Commun. 51 (2015) 2088–2090. http: /pubs. rsc. org/en/content/articlehtml/2014/cc/c4cc09209k (accessed August 20, 2015).
DOI: 10.1039/c4cc09209k
Google Scholar
[33]
G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature. 241 (1973) 20–22.
DOI: 10.1038/physci241020a0
Google Scholar
[34]
B. Sun, M. Wang, Z. Lou, M. Huang, C. Xu, X. Li, L. -J. Chen, Y. Yu, G.L. Davis, B. Xu, others, From Ring-in-Ring to Sphere-in-Sphere: Self-Assembly of Discrete 2D and 3D Architectures with Increasing Stability, J. Am. Chem. Soc. 137 (2015).
DOI: 10.1021/ja511443p
Google Scholar
[35]
W. -C. Law, K. -T. Yong, A. Baev, R. Hu, P.N. Prasad, Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods, Opt. Express. 17 (2009) 19041–19046.
DOI: 10.1364/oe.17.019041
Google Scholar
[36]
Z. Lou, B. Wang, C. Guo, K. Wang, H. Zhang, B. Xu, Molecular-level insights of early-stage prion protein aggregation on mica and gold surface determined by AFM imaging and molecular simulation, Colloids Surf. B Biointerfaces. 135 (2015) 371–378.
DOI: 10.1016/j.colsurfb.2015.07.053
Google Scholar
[37]
L.A. Lyon, D.J. Peña, M.J. Natan, Surface Plasmon Resonance of Au Colloid-Modified Au Films: Particle Size Dependence, J. Phys. Chem. B. 103 (1999) 5826–5831.
DOI: 10.1021/jp984739v
Google Scholar
[38]
J.M. Lee, H.K. Park, Y. Jung, J.K. Kim, S.O. Jung, B.H. Chung, Direct immobilization of protein G variants with various numbers of cysteine residues on a gold surface, Anal. Chem. 79 (2007) 2680–2687.
DOI: 10.1021/ac0619231
Google Scholar