Quick and Sensitive Detection of Prion Disease-Associated Isoform (PrPSc) Using a Novel Gold Surface/PrPSc/Gold Nanoparticles Sandwich SPR Detection Assay

Article Preview

Abstract:

Prion protein has drawn great attention due to its pathological potential to prion diseases. Discriminate and detection of the trace quantities PrPSc is an important measure for prion disease diagnosis at the presymptomatic stage. In this study, we developed a novel sandwich surface plasmon resonance (SPR) assay for the detection of PrPSc, involving bare gold surfaces and bare gold nanoparticles. PrPSc can be captured by the SPR sensing surface via a surface assisted coupling reaction between its intra-molecular disulfide bond and the gold atoms, while PrPC cannot bind to the gold surface strongly. The gold nanoparticles were proved to amplify the SPR detection signals via the coupling of their localized surface plasmon (LSP) with the propagating plasmon on the SPR gold surface. Our results confirmed that the bare SPR gold surface successfully captured the PrPSc from the solution with a LOD of 0.5ng/mL and a linear detection range from 0.5ng/mL to 500ng/mL. Injecting the gold nanoparticles after PrPSc yielded a dramatic enhancement of signal, with a lower LOD of 0.001ng/mL and a linear detection range from 0.001ng/mL to 10ng/mL. The gold nanoparticles permitted 4 to 322-fold increase of the signals. The required detection time was controlled in 15 min. PrPC, cys-protein G and their mixtures with PrPSc, were also detected via this sandwich SPR detection assay. Atomic force microscope (AFM) was used to evaluate the surface morphology of the SPR gold substrate after the detection. All the obtained results suggested that this novel SPR sandwich detection assay in our work was efficient, sensitive and specific for the detection of trace PrPSc

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-28

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Biasini, J.A. Turnbaugh, U. Unterberger, D.A. Harris, Prion protein at the crossroads of physiology and disease, Trends Neurosci. 35 (2012) 92–103.

DOI: 10.1016/j.tins.2011.10.002

Google Scholar

[2] S.B. Prusiner, Prions, Proc. Natl. Acad. Sci. 95 (1998) 13363–13383.

DOI: 10.1073/pnas.95.23.13363

Google Scholar

[3] L.Y. -L. Lee, R.P. -Y. Chen, Quantifying the Sequence-Dependent Species Barrier between Hamster and Mouse Prions, J. Am. Chem. Soc. 129 (2007) 1644–1652.

DOI: 10.1021/ja0667413

Google Scholar

[4] M.S. Goldberg, P.T. Lansbury Jr, Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson's disease?, Nat. Cell Biol. 2 (2000) E115–E119.

DOI: 10.1038/35017124

Google Scholar

[5] D.M. Hartley, D.M. Walsh, C.P. Ye, T. Diehl, S. Vasquez, P.M. Vassilev, D.B. Teplow, D.J. Selkoe, Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons, J. Neurosci. Off. J. Soc. Neurosci. 19 (1999).

DOI: 10.1523/jneurosci.19-20-08876.1999

Google Scholar

[6] G.S. Jackson, L.L. Hosszu, A. Power, A.F. Hill, J. Kenney, H. Saibil, C.J. Craven, J.P. Waltho, A.R. Clarke, J. Collinge, Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations, Science. 283 (1999).

DOI: 10.1126/science.283.5409.1935

Google Scholar

[7] K.M. Pan, M. Baldwin, J. Nguyen, M. Gasset, A. Serban, D. Groth, I. Mehlhorn, Z. Huang, R.J. Fletterick, F.E. Cohen, Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins., Proc. Natl. Acad. Sci. U. S. A. 90 (1993).

DOI: 10.1073/pnas.90.23.10962

Google Scholar

[8] Y. Wang, X. -Y. Qiao, C. -B. Zhao, X. Gao, Z. -W. Yao, L. Qi, C. -Z. Lu, Report on the first Chinese family with Gerstmann-Sträussler-Scheinker disease manifesting the codon 102 mutation in the prion protein gene, Neuropathology. 26 (2006).

DOI: 10.1111/j.1440-1789.2006.00704.x

Google Scholar

[9] J. de Pedro-Cuesta, M. Glatzel, J. Almazán, K. Stoeck, V. Mellina, M. Puopolo, M. Pocchiari, I. Zerr, H.A. Kretszchmar, J. -P. Brandel, N. Delasnerie-Lauprêtre, A. Alpérovitch, C. Van Duijn, P. Sanchez-Juan, S. Collins, V. Lewis, G.H. Jansen, M.B. Coulthart, E. Gelpi, H. Budka, E. Mitrova, Human transmissible spongiform encephalopathies in eleven countries: diagnostic pattern across time, 1993–2002, BMC Public Health. 6 (2006).

DOI: 10.1186/1471-2458-6-278

Google Scholar

[10] A. Ladogana, M. Puopolo, E.A. Croes, H. Budka, C. Jarius, S. Collins, G.M. Klug, T. Sutcliffe, A. Giulivi, A. Alperovitch, N. Delasnerie-Laupretre, J. -P. Brandel, S. Poser, H. Kretzschmar, I. Rietveld, E. Mitrova, J. de P. Cuesta, P. Martinez-Martin, M. Glatzel, A. Aguzzi, R. Knight, H. Ward, M. Pocchiari, C.M. van Duijn, R.G. Will, I. Zerr, Mortality from Creutzfeldt–Jakob disease and related disorders in Europe, Australia, and Canada, Neurology. 64 (2005).

DOI: 10.1212/01.wnl.0000160117.56690.b2

Google Scholar

[11] W. -C. Yang, M.J. Schmerr, R. Jackman, W. Bodemer, E.S. Yeung, Capillary Electrophoresis-Based Noncompetitive Immunoassay for the Prion Protein Using Fluorescein-Labeled Protein A as a Fluorescent Probe, Anal. Chem. 77 (2005) 4489–4494.

DOI: 10.1021/ac050231u

Google Scholar

[12] P.C. Klohn, L. Stoltze, E. Flechsig, M. Enari, C. Weissmann, A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 11666–11671.

DOI: 10.1073/pnas.1834432100

Google Scholar

[13] B. Chen, R. Morales, M.A. Barria, C. Soto, Estimating prion concentration in fluids and tissues by quantitative PMCA, Nat. Methods. 7 (2010) 519–520.

DOI: 10.1038/nmeth.1465

Google Scholar

[14] G.P. Saborio, B. Permanne, C. Soto, Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding, Nature. 411 (2001) 810–813.

DOI: 10.1038/35081095

Google Scholar

[15] H. Englund, D. Sehlin, A. -S. Johansson, L.N.G. Nilsson, P. Gellerfors, S. Paulie, L. Lannfelt, F.E. Pettersson, Sensitive ELISA detection of amyloid-β protofibrils in biological samples, J. Neurochem. 103 (2007) 334–345.

DOI: 10.1111/j.1471-4159.2007.04759.x

Google Scholar

[16] M. Varshney, P.S. Waggoner, R.A. Montagna, H.G. Craighead, Prion protein detection in serum using micromechanical resonator arrays, Talanta. 80 (2009) 593–599.

DOI: 10.1016/j.talanta.2009.07.032

Google Scholar

[17] M. Varshney, P.S. Waggoner, C.P. Tan, K. Aubin, R.A. Montagna, H.G. Craighead, Prion protein detection using nanomechanical resonator arrays and secondary mass labeling, Anal. Chem. 80 (2008) 2141–2148.

DOI: 10.1021/ac702153p

Google Scholar

[18] F. Fujii, M. Horiuchi, M. Ueno, H. Sakata, I. Nagao, M. Tamura, M. Kinjo, Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy, Anal. Biochem. 370 (2007).

DOI: 10.1016/j.ab.2007.07.018

Google Scholar

[19] B.M. Coleman, R.M. Nisbet, S. Han, R. Cappai, D.M. Hatters, A.F. Hill, Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence, Biochem. Biophys. Res. Commun. 380 (2009) 564–568.

DOI: 10.1016/j.bbrc.2009.01.120

Google Scholar

[20] T. Reuter, B.H. Gilroyed, T.W. Alexander, G. Mitchell, A. Balachandran, S. Czub, T.A. McAllister, Prion protein detection via direct immuno-quantitative real-time PCR, J. Microbiol. Methods. 78 (2009) 307–311.

DOI: 10.1016/j.mimet.2009.07.001

Google Scholar

[21] L. -Y. Zhang, H. -Z. Zheng, Y. -J. Long, C. -Z. Huang, J. -Y. Hao, D. -B. Zhou, CdTe quantum dots as a highly selective probe for prion protein detection: Colorimetric qualitative, semi-quantitative and quantitative detection, Talanta. 83 (2011).

DOI: 10.1016/j.talanta.2010.11.075

Google Scholar

[22] H. -J. Zhang, H. -Z. Zheng, Y. -J. Long, G. -F. Xiao, L. -Y. Zhang, Q. -L. Wang, M. Gao, W. -J. Bai, Gold nanoparticles as a label-free probe for the detection of amyloidogenic protein, Talanta. 89 (2012) 401–406.

DOI: 10.1016/j.talanta.2011.12.052

Google Scholar

[23] L. Liang, Y. Long, H. Zhang, Q. Wang, X. Huang, R. Zhu, P. Teng, X. Wang, H. Zheng, Visual detection of prion protein based on color complementarity principle, Biosens. Bioelectron. 50 (2013) 14–18.

DOI: 10.1016/j.bios.2013.06.014

Google Scholar

[24] S.J. Xiao, P.P. Hu, X.D. Wu, Y.L. Zou, L.Q. Chen, L. Peng, J. Ling, S.J. Zhen, L. Zhan, Y.F. Li, C.Z. Huang, Sensitive Discrimination and Detection of Prion Disease-Associated Isoform with a Dual-Aptamer Strategy by Developing a Sandwich Structure of Magnetic Microparticles and Quantum Dots, Anal. Chem. 82 (2010).

DOI: 10.1021/ac101865s

Google Scholar

[25] X.D. Hoa, A.G. Kirk, M. Tabrizian, Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress, Biosens. Bioelectron. 23 (2007) 151–160.

DOI: 10.1016/j.bios.2007.07.001

Google Scholar

[26] B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing, Sens. Actuators. 4 (1983) 299–304.

DOI: 10.1016/0250-6874(83)85036-7

Google Scholar

[27] C. Situ, M.H. Mooney, C.T. Elliott, J. Buijs, Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis, TrAC Trends Anal. Chem. 29 (2010) 1305–1315.

DOI: 10.1016/j.trac.2010.09.003

Google Scholar

[28] K.S. Lee, M. Lee, K.M. Byun, I.S. Lee, Surface plasmon resonance biosensing based on target-responsive mobility switch of magnetic nanoparticles under magnetic fields, J. Mater. Chem. 21 (2011) 5156–5162.

DOI: 10.1039/c0jm03770b

Google Scholar

[29] A. Liang, Q. Liu, G. Wen, Z. Jiang, The surface-plasmon-resonance effect of nanogold/silver and its analytical applications, TrAC Trends Anal. Chem. 37 (2012) 32–47.

DOI: 10.1016/j.trac.2012.03.015

Google Scholar

[30] J. Wang, A. Munir, Z. Zhu, H.S. Zhou, Magnetic Nanoparticle Enhanced Surface Plasmon Resonance Sensing and Its Application for the Ultrasensitive Detection of Magnetic Nanoparticle-Enriched Small Molecules, Anal. Chem. 82 (2010) 6782–6789.

DOI: 10.1021/ac100812c

Google Scholar

[31] B. Wang, Z. Lou, B. Park, Y. Kwon, H. Zhang, B. Xu, Surface conformations of an anti-ricin aptamer and its affinity for ricin determined by atomic force microscopy and surface plasmon resonance, Phys. Chem. Chem. Phys. PCCP. (2014).

DOI: 10.1039/c4cp03190c

Google Scholar

[32] B. Wang, C. Guo, Z. Lou, B. Xu, Following the aggregation of human prion protein on Au (111) surface in real-time, Chem. Commun. 51 (2015) 2088–2090. http: /pubs. rsc. org/en/content/articlehtml/2014/cc/c4cc09209k (accessed August 20, 2015).

DOI: 10.1039/c4cc09209k

Google Scholar

[33] G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature. 241 (1973) 20–22.

DOI: 10.1038/physci241020a0

Google Scholar

[34] B. Sun, M. Wang, Z. Lou, M. Huang, C. Xu, X. Li, L. -J. Chen, Y. Yu, G.L. Davis, B. Xu, others, From Ring-in-Ring to Sphere-in-Sphere: Self-Assembly of Discrete 2D and 3D Architectures with Increasing Stability, J. Am. Chem. Soc. 137 (2015).

DOI: 10.1021/ja511443p

Google Scholar

[35] W. -C. Law, K. -T. Yong, A. Baev, R. Hu, P.N. Prasad, Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods, Opt. Express. 17 (2009) 19041–19046.

DOI: 10.1364/oe.17.019041

Google Scholar

[36] Z. Lou, B. Wang, C. Guo, K. Wang, H. Zhang, B. Xu, Molecular-level insights of early-stage prion protein aggregation on mica and gold surface determined by AFM imaging and molecular simulation, Colloids Surf. B Biointerfaces. 135 (2015) 371–378.

DOI: 10.1016/j.colsurfb.2015.07.053

Google Scholar

[37] L.A. Lyon, D.J. Peña, M.J. Natan, Surface Plasmon Resonance of Au Colloid-Modified Au Films:  Particle Size Dependence, J. Phys. Chem. B. 103 (1999) 5826–5831.

DOI: 10.1021/jp984739v

Google Scholar

[38] J.M. Lee, H.K. Park, Y. Jung, J.K. Kim, S.O. Jung, B.H. Chung, Direct immobilization of protein G variants with various numbers of cysteine residues on a gold surface, Anal. Chem. 79 (2007) 2680–2687.

DOI: 10.1021/ac0619231

Google Scholar