Sensing Caffeine and Nicotine with Biphenylene Carbon, α-Graphyne Sheet and Nanotube: A Density Functional Theory Study

Article Preview

Abstract:

We have used density functional theory to study adsorption of caffeine and nicotine on carbon based nanostructures. The effect of caffeine and nicotine molecules on the electronic properties of α-graphyne, biphenylene carbon, and (4,0) nanotube based on α-graphyne were studied. It was found that caffeine and nicotine molecules were adsorbed strongly on these sheets and nanotube. The charges were transferred from molecules to the sheets and nanotube. Because of adsorption of these donor molecules, biphenylene carbon, α-graphyne sheet and nanotube become n-type semiconductors. Sensitivity of the electronic properties of these sheets and nanotube to adsorption of caffeine and nicotine indicate the carbon based nanostructures can be used for detection of caffeine and nicotine molecules.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-17

Citation:

Online since:

July 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin, Heidelberg (2001).

Google Scholar

[2] D. Malko, C. Neiss, F. Vines, A. Gorling, Phys. Rev. Lett. 108 (2012) 086804.

Google Scholar

[3] A.L. Ivanovskii, Prog. Solid State Chem. 41 (2013) 1.

Google Scholar

[4] B.G. Kim, H.J. Choi, Phys. Rev. B 86 (2012) 115435.

Google Scholar

[5] G. Brunetto, P.A.S. Autreto, L.D. Machado, et al J. Phys. Chem. C 116 (2012) 12810.

Google Scholar

[6] V.R. Coluci, D.S. Galvao, R.H. Baughman, J. Chem. Phys. 121 (2004) 3228.

Google Scholar

[7] V.R. Coluci, S.F. Braga, S.B. Legoas, D.S. Galvao, R.H. Baughman, Nanotechnology 15 (2004) 142.

Google Scholar

[8] R.H. Baughman, H. Eckhardt, M. Kertesz, J. Chem. Phys. 87 (1987) 6687.

Google Scholar

[9] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666.

DOI: 10.1126/science.1102896

Google Scholar

[10] J. Zhao, A. Buldum, J. Han, J.P. Lu, Nanotechnology 13 (2002) 195.

Google Scholar

[11] R. Majidi, A.R. Karami, Diam. Rel. Mat. 66 (2016) 47.

Google Scholar

[12] S. Jalili, R. Majidi, Comput. Theor. Nanosci. 3 (2006) 664.

Google Scholar

[13] O. Leenaerts, B. Partoens, F.M. Peeters, Phys. Rev. B 77 (2008) 125416.

Google Scholar

[14] M. Chei, Y.P. Zhao, Comp. Mater. Sci. 46 (2009) 1085.

Google Scholar

[15] R. Majidi, Mol. Phys. 111 (2012) 89.

Google Scholar

[16] M. Chi, Y.P. Zhao, Comput. Mater. Sci. 56 (2012) 79.

Google Scholar

[17] R. Majidi, A.R. Karami, Indian J. Phys. 88 (2014) 483.

Google Scholar

[18] R. Majidi, A.R. Karami, Physica E 54 (2013) 177.

Google Scholar

[19] R. Majidi, A.R. Karami, Mol. Phys. 111 (2013) 3194.

Google Scholar

[20] A.R. Karami, R. Majidi, Chem. Lett. 44 (2015) 1071.

Google Scholar

[21] R. Majidi, A.R. Karami, Physica E 59 (2014) 169.

Google Scholar

[22] A.R. Karami, R. Majidi, Rom. J. Phys. 20 (2015) 1474.

Google Scholar

[23] R. Majidi, A.R. Karami, Struct. Chem. 26 (2015) 5.

Google Scholar

[24] J. Rusted, L. Graupner, N. O'Connell, C. Nicholls, Psychopharmacology 115 (1994) 547.

Google Scholar

[25] Y. Xu, J.H. Zhu, L.L. Ma, J.A. An, Y.L. Wei, X.Y. Shang, Microporous and Mesoporous Mater. 60 (2003) 125.

Google Scholar

[26] http: /www. livestrong. com/article/91383-caffeine-nicotine.

Google Scholar

[27] E.C. Girao, S.B. Fagan, I. Zanella, A.G.S. Filho, J. Hazard. Mater. 184 (2010) 678.

Google Scholar

[28] H.J. Lee, G. Kim, Y.K. Kwon, Chem. Phys. Lett. 580 (2013) 57.

Google Scholar

[29] T. Ozaki, H. Kino, J. Yu, M.J. Han, N. Kobayashi, M. Ohfuti, F. Ishii, et al. User's manual of OpenMX version 3. 6. <http: /www. openmx-square. org>.

Google Scholar

[30] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[31] S. Grimme, J. Comput. Chem. 27 (2006) 1787.

Google Scholar