[1]
P. Xiong, J. Zhu, X. Wang, Cadmium sulfide-ferrite nanocomposite as a magnetically recyclable photocatalyst with enhanced visible-light-driven photocatalytic activity and photostability, Ind. Eng. Chem. Res. 52 (2013) 17126-17133.
DOI: 10.1021/ie402437k
Google Scholar
[2]
U.T.D. Thuy, N.Q. Liem, C.M.A. Parlett, G.M. Lalev, K. Wilson, Synthesis of CuS and CuS/ZnS core/shell nanocrystals for photocatalytic degradation of dyes under visible light, Catal. Commun. 44 (2014) 62-67.
DOI: 10.1016/j.catcom.2013.07.030
Google Scholar
[3]
M. Saranya, R. Ramachandran, E.J.J. Samuel, S.K. Jeong, A.N. Grace, Enhanced visible-light photocatalytic reduction of organic pollutant and electrochemical properties of CuS catalyst, Powder Technol. 279 (2015) 209-220.
DOI: 10.1016/j.powtec.2015.03.041
Google Scholar
[4]
X.H. Guan, P. Qu, X. Guan, G.S. Wang, Hydrothermal synthesis of hierarchical CuS/ZnS nanocomposites and their photocatalytic and microwave absorption properties, RSC Adv., 4 (2014) 15579-15585.
DOI: 10.1039/c4ra00659c
Google Scholar
[5]
K. Vignesh, R. Priyanka, M. Rajarajan, A. Suganthi, Photoreduction of Cr (VI) in water using Bi2O3-ZrO2 nanocomposite under visible light irradiation, Mater. Sci. Eng., B 178 (2013) 149-157.
DOI: 10.1016/j.mseb.2012.10.035
Google Scholar
[6]
Y. He, L. Zhang, X. Wang, Y. Wu, H. Lin, L. Zhao, W. Weng, H. Wan, M. Fan, Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation, RSC Adv., 4 (2014) 13610-13619.
DOI: 10.1039/c4ra00693c
Google Scholar
[7]
R. Satheesh, K. Vignesh, A. Suganthi, M. Rajarajan, Visible light responsive photocatalytic applications of transition metal (M = Cu, Ni and Co) doped a-Fe2O3 nanoparticles, J. Environ. Chem. Eng. 2 (2014) 1956-(1968).
DOI: 10.1016/j.jece.2014.08.016
Google Scholar
[8]
L. Shi, L. Liang, J. Ma, F. Wang, J. Sun, Enhanced photocatalytic activity over the Ag2O-g-C3N4 composite under visible light, Catal. Sci. Technol. 4 (2014) 4758-765.
DOI: 10.1039/c3cy00871a
Google Scholar
[9]
R. Dhanabal, A. Chithambararaj, S. Velmathi, A. Chandra Bose, Visible light driven degradation of methylene blue dye using Ag3PO4, J. Environ. Chem. Eng. 3 (2015) 1872-1881.
DOI: 10.1016/j.jece.2015.06.001
Google Scholar
[10]
X. Liu, Y. Yan, Z. Da, W. Shi, C. Ma, P. Lv, Y. Tang, G. Yao, Y. Wu, P. Huo, Y. Yan, Significantly enhanced photocatalytic performance of CdS coupled WO3 nanosheets and the mechanism study, Chem. Eng. J. 241 (2014) 243-250.
DOI: 10.1016/j.cej.2013.12.058
Google Scholar
[11]
M. Basu, N. Garg, A.K. Ganguli, A type-II semiconductor (ZnO/CuS heterostructure) for visible light photocatalysis, J. Mater. Chem. A 2 (2014) 7517-7525.
DOI: 10.1039/c3ta15446g
Google Scholar
[12]
F. Jiang, T. Yan, H. Chen, A. Sun, C. Xu, X. Wang, A g-C3N4-CdS composite catalyst with high visible-light-driven catalytic activity and photostability for methylene blue degradation, Appl. Surf. Sci. 295 (2014) 164-172.
DOI: 10.1016/j.apsusc.2014.01.022
Google Scholar
[13]
F. Li, Y. Zhao, Q. Wang, X. Wang, Y. Hao, R. Liu, D. Zhao, Enhanced visible-light photocatalytic activity of active Al2O3/g-C3N4 heterojunctions synthesized via surface hydroxyl modification, J. Hazard. Mater. 283 (2015) 371-381.
DOI: 10.1016/j.jhazmat.2014.09.035
Google Scholar
[14]
Y.Q. Zhang, S. Li, B.P. Zhang, Controllable synthesis of Bi2S3/CuS heterostructures by an in situ ion-exchange solvothermal process and their enhanced photocatalytic performance, RSC Adv., DOI: 10. 1039/C6RA19365J.
DOI: 10.1039/c6ra19365j
Google Scholar
[15]
Y. Chen, G. Tian, Q. Guo, R. Li, T. Han, H. Fu, One-step synthesis of hierarchical Bi2S3 nanoflower\In2S3 nanosheet composite with efficient visible light photocatalytic activity, CrystEngComm, DOI: 10. 1039/C5CE01747E.
DOI: 10.1039/c5ce01747e
Google Scholar
[16]
Z. Wu, L. Chen, C. Xing, D. Jiang, J. Xie, M. Chen, Controlled synthesis of Bi2S3/ZnS microspheres by an in situ ion-exchange process with enhanced visible light photocatalytic activity, Dalton trans. DOI: 10. 1039/c3dt50984b.
DOI: 10.1039/c3dt50984b
Google Scholar
[17]
M. Xu, H. Niu, J. Song, C. Mao, S. Zhang, C. Zhu, C. Chen, Facile synthesis of graphene-like Co3S4 nanosheet/Ag2S nanocomposite with enhanced performance in visible-light photocatalysis, Appl. Surf. Sci. 351(2015) 374-381.
DOI: 10.1016/j.apsusc.2015.05.158
Google Scholar
[18]
X. Liu, Y. Yan, Z. Da, W. Shi, C. Ma, P. Lv, Y. Tang, G. Yao, Y. Wu, P. Huo, Y. Yan, Significantly enhanced photocatalytic performance of CdS coupled WO3 nanosheets and the mechanism study, Chem. Eng. J. 241 (2014) 243-250.
DOI: 10.1016/j.cej.2013.12.058
Google Scholar
[19]
T. Jaiganesh, J.D.V. Rani, A. Girigoswami, Spectroscopically characterized cadmium sulfide quantum dots lengthening the lag phase of Escherichia coli growth, Spectrochim. Acta, Part A 92 (2012) 29-32.
DOI: 10.1016/j.saa.2012.02.044
Google Scholar
[20]
H. Zhao, Y. Dong, P. Jiang, G. Wang, H. Miao, R. Wu, L. Kong, J. Zhang, C. Zhang, Light-Assisted Preparation of a ZnO/CdS Nanocomposite for Enhanced Photocatalytic H2 Evolution: An Insight into Importance of in Situ Generated ZnS, ACS Sustainable Chem. Eng. DOI: 10. 1021/acssuschemeng. 5b00102.
DOI: 10.1021/acssuschemeng.5b00102
Google Scholar
[21]
J. Xu, X. Cao, Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light, Chem. Eng. J. 260 (2015) 642-648.
DOI: 10.1016/j.cej.2014.07.046
Google Scholar
[22]
B. Zeng, Y. Yin, The synthesis of CuS hexagonal nanosheet-graphene for use as a high performance photocatalyst, Nano, 11 (2016) 1650054.
DOI: 10.1142/s1793292016500545
Google Scholar
[23]
B. Zeng, X. Chen, A general method for the synthesis of metal (Cd, Zn) sulphide nanorods/graphene for use as a high performance photocatalyst, Dig J Nanomater Biostruct., 11 (2016) 559-566.
Google Scholar
[24]
X. Wang, H. Hu, S. Chen, K. Zhang, J. Zhang, W. Zou, R. Wang, One-step fabrication of BiOCl/CuS heterojunction photocatalysts with enhanced visible-light responsive activity, Mater. Chem. Phys. 158 (2015) 67-73.
DOI: 10.1016/j.matchemphys.2015.03.038
Google Scholar
[25]
Q. Wang, G. Yun, Y. Bai, N. An, Y. Chen, R. Wang, Z. Lei, W. Shangguan, CuS, NiS as co-catalyst for enhanced photocatalytic hydrogen evolution over TiO2, Int. J. Hydrogen Energy 39 (2014) 13421-3428.
DOI: 10.1016/j.ijhydene.2014.04.020
Google Scholar
[26]
L.J. Zhang, T.F. Xie, D.J. Wang, S. Li, L.L. Wang, L.P. Chen, Y.C. Lu, Noble-metal-free CuS/CdS composites for photocatalytic H2 evolution and its photogenerated charge transfer properties, Int. J. Hydrogen energy 381 (2013) 1811-11817.
DOI: 10.1016/j.ijhydene.2013.06.115
Google Scholar
[27]
F. Cheng, Q. Xiang, A solid-state approach to fabricate CdS/CuS nano heterojunction with promoted visible-light photocatalytic H2-evolution activity, DOI: 10. 1039/C6RA16076J.
DOI: 10.1039/c6ra16076j
Google Scholar
[28]
Q. Wang, L. Zheng, Y. Bai, J. Zhao, F. Wang, R. Zhang, H. Huang, B. Su, Zn3(OH)2V2O7. 2H2O/g-C3N4: A novel composite for efficient photodegradation of methylene blue under visible-light irradiation, Appl. Surf. Sci. 347 (2015) 602-609.
DOI: 10.1016/j.apsusc.2015.04.123
Google Scholar
[29]
V.K. Gupta, D. Pathania, S. Agarwal, P. Singh, Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light, J. Hazard. Mater. 243 (2012) 179-186.
DOI: 10.1016/j.jhazmat.2012.10.018
Google Scholar
[30]
Q. Wang, J. Lian, Q. Ma, Y. Bai, J. Tong, J. Zhong, R. Wang, H. Huang, B. Su, Photodegrdation of Rhodamine B over a novel photocatalyst of feather keratin decorated CdS under visible light irradiation, New J. Chem. DOI: 10. 1039/c5nj00987a.
DOI: 10.1039/c5nj00987a
Google Scholar
[31]
M. Saranya, C. Santhosh, R. Ramachandran, P. Kollu, P. Saravanan, M. Vinoba, S.K. Jeong, A.N. Grace, Hydrothermal growth of CuS nanostructures and its photocatalytic properties, Powder Technol. 252 (2014) 25-32.
DOI: 10.1016/j.powtec.2013.10.031
Google Scholar
[32]
T. Jayaraman, S.A. Raja, A. Priya, M. Jagannathan, M. Ashokkumar, Synthesis of a visible-light active V2O5-g-C3N4 heterojunction as an efficient photocatalytic and photoelectrochemical material, New J. Chem. 39 (2015) 1367-1374.
DOI: 10.1039/c4nj01807a
Google Scholar
[33]
X. Wang, L. Zhang, H. Lin, Q. Nong, Y. Wu, T. Wu, Y. He, Synthesis and characterization of a ZrO2/g-C3N4 composite with enhanced visible-light photoactivity for rhodamine degradation, RSC Adv., 4 (2015) 40029-40035.
DOI: 10.1039/c4ra06035k
Google Scholar
[34]
W. Cui, W. An, L. Liu, J. Hu, Y. Liang, Synthesis of CdS/BiOBr composite and its enhanced photocatalytic degradation for Rhodamine B, Appl. Surf. Sci. 319 (2014) 298-305.
DOI: 10.1016/j.apsusc.2014.05.179
Google Scholar
[35]
J. Theerthagiri, R.A. Senthil, A. Malathi, A. Selvi, J. Madhavan, M. Ashokkumar, Synthesis and characterization of a CuS-WO3 composite photocatalyst for enhanced visible light photocatalytic activity, RSC Adv. 5 (2015) 52718-52725.
DOI: 10.1039/c5ra06512g
Google Scholar
[36]
M. Yan, Y. Yan, Y. Wu, Y. Hua, W. Shi, Microwave-assisted synthesis of monoclinic-tetragonal BiVO4 heterojunctions with enhanced visible-light-driven photocatalytic degradation of tetracycline, RSC Adv. DOI: 10. 1039/C5RA13684A.
DOI: 10.1039/c5ra13684a
Google Scholar