Optimization of Active Carbonaceous Material Obtained by Low Hydrothermal Carbonization of Plane Tree Seed with H3PO4

Article Preview

Abstract:

Activated carbons (ACs) were successfully prepared using plane tree seed (PTS) as a cheap and renewable raw material. The plane tree seeds were firstly treated combining magnetic (MM) and ultrasonic mixing (USM) during 0.5, 1 and 3 h in 1 M, 3 M and 6 M of H3PO4 solutions, and then activated at 260 °C during 20 h (low temperature hydrothermal carbonization–low HTC) in above mentioned solutions of the same molarity. The influence of combined mixing and activation processes on physical, structural and morphological properties, and their optimization was studied by X-ray powder diffraction (XRPD), Raman spectroscopy, nitrogen adsorption-desorption isotherms, fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-84

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Béguin, E. Frackowiak, Nanotextured carbons for electrochemical energy storage. In: Gogotsi Y, (ed. ), Nanomaterials Handbook. New York, CRC Press/ Taylor and Francis Group, 2006 [chapter 26].

DOI: 10.1201/9781420004014.ch26

Google Scholar

[2] D. Wang, Z. Geng B. Li, C. Zhang, High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons, Electrochim. Acta, 173 (2015)377-84.

DOI: 10.1016/j.electacta.2015.05.080

Google Scholar

[3] L. Wei, G. Yushin, Electrical double layer capacitors with activated sucrose-derived carbon electrodes, Carbon, 49 (2011) 4830-38.

DOI: 10.1016/j.carbon.2011.07.003

Google Scholar

[4] C. Bouchelta, M. S. Medjram, M. Zoubida, F. A. Chekkat., N. Ramdane, J. P. Bellat, Effect of pyrolysis conditions on the porous structure development of date pits activated carbon, J. Anal. Appl. Pyrolisis, 94 (2012) 215-22.

DOI: 10.1016/j.jaap.2011.12.014

Google Scholar

[5] E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39 (2001) 937–50.

DOI: 10.1016/s0008-6223(00)00183-4

Google Scholar

[6] A. G. Pandolfo, A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 157 (2006) 11–27.

DOI: 10.1016/j.jpowsour.2006.02.065

Google Scholar

[7] F. Béguin, E. Raymundo-Piñero, E. Frackowiak, Electrical Double-Layer Capacitors and Pseudocapacitors. In: Be´guin F, Frackowiak E, (ed. ), Carbons for Electrochemical Energy Storage and Conversion Systems. New York, CRC Press/Taylor and Francis Group, 2010 [chapter 8].

DOI: 10.1201/9781420055405-c8

Google Scholar

[8] L. -T. Song, Z. -Y. Wu, H. -W. Liang, F. Zhou, Z. -Y. Yu, L. Xu, Z. Pan, S. -H. Yun, Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates, Nano Energy 19 (2016).

DOI: 10.1016/j.nanoen.2015.10.004

Google Scholar

[9] V. Dodevski, M. Stojmenović, M. Vujković, J. Krstić, S. Krstić, D. Bajuk-Bogdanović, B. Kuzmanović, B. Kaluerović, S. Menus, Complex insight into the charge storage behavior of active carbons obtained by carbonization of the plane tree seed, Electrochim. Acta 222 (2016).

DOI: 10.1016/j.electacta.2016.10.182

Google Scholar

[10] X. L. Chen, W. S. Li, C. L. Tan, W. Li, Y.Z. Wu, Improvement in electrochemical capacitance of carbon materials by nitric acid treatment. J. Power Sources, 184 (2008) 668-74.

DOI: 10.1016/j.jpowsour.2008.05.073

Google Scholar

[11] T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara, Electric double-layer capacitor using organic electrolyte, J. Power Sources, 60 (1996) 239-47.

DOI: 10.1016/s0378-7753(96)80017-6

Google Scholar

[12] D. Hulicova, M. Seredych, G. Q. Lu, T. J. Bandosz, Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors, Adv. Funct. Mater., 19 (2009) 438-47.

DOI: 10.1002/adfm.200801236

Google Scholar

[13] M. Vujković, N. Gavrilov, I. Pašti, J. Krstić, J. Travas-Sejdić, G. Ćirić-Marjanović et al. Superior capacitive and electrocatalytic properties of carbonized nanostructure polyanilne upon a low- temperature hydrothermal treatment, Carbon 64 (2013).

DOI: 10.1016/j.carbon.2013.07.100

Google Scholar

[14] Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci., 8 (2015) 702-730.

DOI: 10.1039/c4ee03229b

Google Scholar

[15] L. -T. Song, Z. -Y. Wu, F. Zhou, H. -W. Liang, Z. -Y. Yu, .S. -H. Yu. Sustainable Hydrothermal Carbonization Synthesis of Iron/Nitrogen-Doped Carbon Nanofiber Aerogels as Electrocatalysts for Oxygen Reduction, Small, 46 (2016) 6398–406.

DOI: 10.1002/smll.201602334

Google Scholar

[16] H. -W. Liang, X. Cao, W. -J. Zhang, H. -T. Lin, F. Zhou, L. -F. Chen, S. -H. Yu. Robust and Highly Effi cient Free-Standing Carbonaceous Nanofi ber Membranes for Water Purifi cation, Adv. Funct. Mater., 21 (2011) 3851–8.

DOI: 10.1002/adfm.201100983

Google Scholar

[17] H. -W. Liang, Q. -F. Guan, L. -F. Chen, Z. Zhu, W. -J. Zhang, S. -H. Yu. Macroscopic-Scale Template Synthesis of Robust Carbonaceous Nanofiber Hydrogels and Aerogels and Their Applications, Angew. Chem. Int. Ed., 51 (2012) 5101–5.

DOI: 10.1002/anie.201200710

Google Scholar

[18] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313 (2006)1760–1763.

DOI: 10.1126/science.1132195

Google Scholar

[19] Bo Hu, Kan Wang, Liheng Wu, Shu-Hong Yu, Markus Antonietti, and Maria-Magdalena Titirici. Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass, Adv. Mater., 22 (2010) 1–16.

DOI: 10.1002/adma.200902812

Google Scholar

[20] D. Wang, Z. Geng, B. Li, C. Zhang, High performance electrode materials for electric double–layer capacitors based on biomass–derived activated carbons, Electrochim Acta, 173 (2015) 377–84.

DOI: 10.1016/j.electacta.2015.05.080

Google Scholar

[21] L. Wei, G. Yushin, Electrical double layer capacitors with activated sucrose–derived carbon electrodes, Carbon, 49(2011) 4830–8.

DOI: 10.1016/j.carbon.2011.07.003

Google Scholar

[22] J. L. Figueiredo M. F. R. Pereira, M. M. A. Freitas, J. J. M. Órfão, Modification of the surface chemistry of activated carbons, Carbon, 37 (1999) 1379–89.

DOI: 10.1016/s0008-6223(98)00333-9

Google Scholar

[23] M. Turmuzi, W. R. W. Daud, S. M. Tasirin, M. S. Takriff, S. E. Iyuke. Production of activated carbon from candlenut shell by CO2 activation, Carbon, 42 (2004) 453–55.

DOI: 10.1016/j.carbon.2003.11.015

Google Scholar

[24] C. Bouchelta, M. S. Medjram, M. Zoubida, F. A. Chekkat, N. Ramdane, J. P. Bellat, Effect of pyrolysis conditions on the porous structure development of date pits activated carbon, J Anal Appl Pyrolisis, 94 (2012) 215–22.

DOI: 10.1016/j.jaap.2011.12.014

Google Scholar

[25] D. Hulicova, M. Seredych, G. Q. Lu, T. J. Bandosz, Combined Effect of Nitrogen– and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors, Adv Funct Mater, 19 (2009) 438–47.

DOI: 10.1002/adfm.200801236

Google Scholar

[26] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 7 (2008) 845–54.

Google Scholar

[27] K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowski, Electrochemical capacitors based on highly porous carbons prepared by KOH activation, Electrochim Acta, 49 (2004) 515–23.

DOI: 10.1016/j.electacta.2003.08.026

Google Scholar

[28] K. Fic, E. Frackowiak, F. Béguin, Unusual energy enhancement in carbon–based electrochemical capacitors, J. Mater Chem, 22 (2012) 24213–23.

DOI: 10.1039/c2jm35711a

Google Scholar

[29] S. I. Pyun, C. H. Kim, S. W. Kim, J. H. Kim, Effect of Pore Size Distribution of Activated Carbon Electrodes on Electric Double–Layer Capacitor Performance, J. New Mat. Electrochem Systems, 5 (2002) 289–95.

Google Scholar

[30] I. I. Gurten, M. Ozmak, E. Yagmur, Z. Aktas, Preparation and characterisation of activated carbon from waste tea using K2CO3. Biomass Bioenergy, 37 (2012) 73–81.

DOI: 10.1016/j.biombioe.2011.12.030

Google Scholar

[31] T. X. Shang, M. Y. Zhang, X. J. Jin, Easy procedure to prepare nitrogen–containing activated carbons for supercapacitors, RSC Adv., 4 (2014) 39037–44.

DOI: 10.1039/c4ra05881j

Google Scholar

[32] D.Y. Qu, Studies of the activated carbons used in double layer capacitors, J. Power Sources, 109 (2002) 403–11.

DOI: 10.1016/s0378-7753(02)00108-8

Google Scholar

[33] AR Mohamed, M Mohammadi, G. N. Darzi, Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renew Sust Energ Rev 14 (2010) 1591–9.

DOI: 10.1016/j.rser.2010.01.024

Google Scholar

[34] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985).

DOI: 10.1515/iupac.57.0013

Google Scholar

[35] M. Kruk, M. Jaroniec, K. P. Gadkaree, Nitrogen adsorption studies of novel synthetic active carbons, J. Colloid Interface Sci., 192 (1997) 250–6.

DOI: 10.1006/jcis.1997.5009

Google Scholar

[36] M. Jagtoyen, F. Derbyshire, Activated carbons from yellow poplar and white oak by H3PO4activation, Carbon 36 (1998) 1085–97.

DOI: 10.1016/s0008-6223(98)00082-7

Google Scholar

[37] C. Sellitti, J. L. Koenig, H. Ishida, Surface characterization of graphitized carbon finers by attenuated total reflection fourier transfor imnrared spectroscopy, Carbon 28 (1990) 221–8.

DOI: 10.1016/0008-6223(90)90116-g

Google Scholar

[38] B.V. Kaludjerović, V.M. Jovanović, S. I. Stevanović, Ž. D. Bogdanov, Characterization of nanoporous carbon fibrous materials obtained by chemical activation of plane tree seed under ultrasonic irradiation, Ultrasonics Sonochemistry, 21 (2014).

DOI: 10.1016/j.ultsonch.2013.09.004

Google Scholar