Optimization of Active Carbonaceous Material Obtained by Low Hydrothermal Carbonization of Plane Tree Seed with H3PO4

Abstract:

Article Preview

Activated carbons (ACs) were successfully prepared using plane tree seed (PTS) as a cheap and renewable raw material. The plane tree seeds were firstly treated combining magnetic (MM) and ultrasonic mixing (USM) during 0.5, 1 and 3 h in 1 M, 3 M and 6 M of H3PO4 solutions, and then activated at 260 °C during 20 h (low temperature hydrothermal carbonization–low HTC) in above mentioned solutions of the same molarity. The influence of combined mixing and activation processes on physical, structural and morphological properties, and their optimization was studied by X-ray powder diffraction (XRPD), Raman spectroscopy, nitrogen adsorption-desorption isotherms, fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis.

Info:

Periodical:

Pages:

71-84

Citation:

V. Dodevski et al., "Optimization of Active Carbonaceous Material Obtained by Low Hydrothermal Carbonization of Plane Tree Seed with H3PO4", Journal of Nano Research, Vol. 48, pp. 71-84, 2017

Online since:

July 2017

Export:

Price:

$38.00

* - Corresponding Author

[1] F. Béguin, E. Frackowiak, Nanotextured carbons for electrochemical energy storage. In: Gogotsi Y, (ed. ), Nanomaterials Handbook. New York, CRC Press/ Taylor and Francis Group, 2006 [chapter 26].

DOI: https://doi.org/10.1201/9781420004014.ch26

[2] D. Wang, Z. Geng B. Li, C. Zhang, High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons, Electrochim. Acta, 173 (2015)377-84.

DOI: https://doi.org/10.1016/j.electacta.2015.05.080

[3] L. Wei, G. Yushin, Electrical double layer capacitors with activated sucrose-derived carbon electrodes, Carbon, 49 (2011) 4830-38.

DOI: https://doi.org/10.1016/j.carbon.2011.07.003

[4] C. Bouchelta, M. S. Medjram, M. Zoubida, F. A. Chekkat., N. Ramdane, J. P. Bellat, Effect of pyrolysis conditions on the porous structure development of date pits activated carbon, J. Anal. Appl. Pyrolisis, 94 (2012) 215-22.

DOI: https://doi.org/10.1016/j.jaap.2011.12.014

[5] E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39 (2001) 937–50.

DOI: https://doi.org/10.1016/s0008-6223(00)00183-4

[6] A. G. Pandolfo, A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 157 (2006) 11–27.

DOI: https://doi.org/10.1016/j.jpowsour.2006.02.065

[7] F. Béguin, E. Raymundo-Piñero, E. Frackowiak, Electrical Double-Layer Capacitors and Pseudocapacitors. In: Be´guin F, Frackowiak E, (ed. ), Carbons for Electrochemical Energy Storage and Conversion Systems. New York, CRC Press/Taylor and Francis Group, 2010 [chapter 8].

DOI: https://doi.org/10.1201/9781420055405-c8

[8] L. -T. Song, Z. -Y. Wu, H. -W. Liang, F. Zhou, Z. -Y. Yu, L. Xu, Z. Pan, S. -H. Yun, Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates, Nano Energy 19 (2016).

DOI: https://doi.org/10.1016/j.nanoen.2015.10.004

[9] V. Dodevski, M. Stojmenović, M. Vujković, J. Krstić, S. Krstić, D. Bajuk-Bogdanović, B. Kuzmanović, B. Kaluerović, S. Menus, Complex insight into the charge storage behavior of active carbons obtained by carbonization of the plane tree seed, Electrochim. Acta 222 (2016).

DOI: https://doi.org/10.1016/j.electacta.2016.10.182

[10] X. L. Chen, W. S. Li, C. L. Tan, W. Li, Y.Z. Wu, Improvement in electrochemical capacitance of carbon materials by nitric acid treatment. J. Power Sources, 184 (2008) 668-74.

DOI: https://doi.org/10.1016/j.jpowsour.2008.05.073

[11] T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara, Electric double-layer capacitor using organic electrolyte, J. Power Sources, 60 (1996) 239-47.

DOI: https://doi.org/10.1016/s0378-7753(96)80017-6

[12] D. Hulicova, M. Seredych, G. Q. Lu, T. J. Bandosz, Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors, Adv. Funct. Mater., 19 (2009) 438-47.

DOI: https://doi.org/10.1002/adfm.200801236

[13] M. Vujković, N. Gavrilov, I. Pašti, J. Krstić, J. Travas-Sejdić, G. Ćirić-Marjanović et al. Superior capacitive and electrocatalytic properties of carbonized nanostructure polyanilne upon a low- temperature hydrothermal treatment, Carbon 64 (2013).

DOI: https://doi.org/10.1016/j.carbon.2013.07.100

[14] Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci., 8 (2015) 702-730.

DOI: https://doi.org/10.1039/c4ee03229b

[15] L. -T. Song, Z. -Y. Wu, F. Zhou, H. -W. Liang, Z. -Y. Yu, .S. -H. Yu. Sustainable Hydrothermal Carbonization Synthesis of Iron/Nitrogen-Doped Carbon Nanofiber Aerogels as Electrocatalysts for Oxygen Reduction, Small, 46 (2016) 6398–406.

DOI: https://doi.org/10.1002/smll.201602334

[16] H. -W. Liang, X. Cao, W. -J. Zhang, H. -T. Lin, F. Zhou, L. -F. Chen, S. -H. Yu. Robust and Highly Effi cient Free-Standing Carbonaceous Nanofi ber Membranes for Water Purifi cation, Adv. Funct. Mater., 21 (2011) 3851–8.

DOI: https://doi.org/10.1002/adfm.201100983

[17] H. -W. Liang, Q. -F. Guan, L. -F. Chen, Z. Zhu, W. -J. Zhang, S. -H. Yu. Macroscopic-Scale Template Synthesis of Robust Carbonaceous Nanofiber Hydrogels and Aerogels and Their Applications, Angew. Chem. Int. Ed., 51 (2012) 5101–5.

DOI: https://doi.org/10.1002/anie.201200710

[18] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313 (2006)1760–1763.

DOI: https://doi.org/10.1126/science.1132195

[19] Bo Hu, Kan Wang, Liheng Wu, Shu-Hong Yu, Markus Antonietti, and Maria-Magdalena Titirici. Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass, Adv. Mater., 22 (2010) 1–16.

DOI: https://doi.org/10.1002/adma.200902812

[20] D. Wang, Z. Geng, B. Li, C. Zhang, High performance electrode materials for electric double–layer capacitors based on biomass–derived activated carbons, Electrochim Acta, 173 (2015) 377–84.

DOI: https://doi.org/10.1016/j.electacta.2015.05.080

[21] L. Wei, G. Yushin, Electrical double layer capacitors with activated sucrose–derived carbon electrodes, Carbon, 49(2011) 4830–8.

DOI: https://doi.org/10.1016/j.carbon.2011.07.003

[22] J. L. Figueiredo M. F. R. Pereira, M. M. A. Freitas, J. J. M. Órfão, Modification of the surface chemistry of activated carbons, Carbon, 37 (1999) 1379–89.

DOI: https://doi.org/10.1016/s0008-6223(98)00333-9

[23] M. Turmuzi, W. R. W. Daud, S. M. Tasirin, M. S. Takriff, S. E. Iyuke. Production of activated carbon from candlenut shell by CO2 activation, Carbon, 42 (2004) 453–55.

DOI: https://doi.org/10.1016/j.carbon.2003.11.015

[24] C. Bouchelta, M. S. Medjram, M. Zoubida, F. A. Chekkat, N. Ramdane, J. P. Bellat, Effect of pyrolysis conditions on the porous structure development of date pits activated carbon, J Anal Appl Pyrolisis, 94 (2012) 215–22.

DOI: https://doi.org/10.1016/j.jaap.2011.12.014

[25] D. Hulicova, M. Seredych, G. Q. Lu, T. J. Bandosz, Combined Effect of Nitrogen– and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors, Adv Funct Mater, 19 (2009) 438–47.

DOI: https://doi.org/10.1002/adfm.200801236

[26] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 7 (2008) 845–54.

[27] K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowski, Electrochemical capacitors based on highly porous carbons prepared by KOH activation, Electrochim Acta, 49 (2004) 515–23.

DOI: https://doi.org/10.1016/j.electacta.2003.08.026

[28] K. Fic, E. Frackowiak, F. Béguin, Unusual energy enhancement in carbon–based electrochemical capacitors, J. Mater Chem, 22 (2012) 24213–23.

DOI: https://doi.org/10.1039/c2jm35711a

[29] S. I. Pyun, C. H. Kim, S. W. Kim, J. H. Kim, Effect of Pore Size Distribution of Activated Carbon Electrodes on Electric Double–Layer Capacitor Performance, J. New Mat. Electrochem Systems, 5 (2002) 289–95.

[30] I. I. Gurten, M. Ozmak, E. Yagmur, Z. Aktas, Preparation and characterisation of activated carbon from waste tea using K2CO3. Biomass Bioenergy, 37 (2012) 73–81.

DOI: https://doi.org/10.1016/j.biombioe.2011.12.030

[31] T. X. Shang, M. Y. Zhang, X. J. Jin, Easy procedure to prepare nitrogen–containing activated carbons for supercapacitors, RSC Adv., 4 (2014) 39037–44.

DOI: https://doi.org/10.1039/c4ra05881j

[32] D.Y. Qu, Studies of the activated carbons used in double layer capacitors, J. Power Sources, 109 (2002) 403–11.

[33] AR Mohamed, M Mohammadi, G. N. Darzi, Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renew Sust Energ Rev 14 (2010) 1591–9.

DOI: https://doi.org/10.1016/j.rser.2010.01.024

[34] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985).

DOI: https://doi.org/10.1515/iupac.57.0013

[35] M. Kruk, M. Jaroniec, K. P. Gadkaree, Nitrogen adsorption studies of novel synthetic active carbons, J. Colloid Interface Sci., 192 (1997) 250–6.

DOI: https://doi.org/10.1006/jcis.1997.5009

[36] M. Jagtoyen, F. Derbyshire, Activated carbons from yellow poplar and white oak by H3PO4activation, Carbon 36 (1998) 1085–97.

DOI: https://doi.org/10.1016/s0008-6223(98)00082-7

[37] C. Sellitti, J. L. Koenig, H. Ishida, Surface characterization of graphitized carbon finers by attenuated total reflection fourier transfor imnrared spectroscopy, Carbon 28 (1990) 221–8.

DOI: https://doi.org/10.1016/0008-6223(90)90116-g

[38] B.V. Kaludjerović, V.M. Jovanović, S. I. Stevanović, Ž. D. Bogdanov, Characterization of nanoporous carbon fibrous materials obtained by chemical activation of plane tree seed under ultrasonic irradiation, Ultrasonics Sonochemistry, 21 (2014).

DOI: https://doi.org/10.1016/j.ultsonch.2013.09.004