[1]
F. Béguin, E. Frackowiak, Nanotextured carbons for electrochemical energy storage. In: Gogotsi Y, (ed. ), Nanomaterials Handbook. New York, CRC Press/ Taylor and Francis Group, 2006 [chapter 26].
DOI: 10.1201/9781420004014.ch26
Google Scholar
[2]
D. Wang, Z. Geng B. Li, C. Zhang, High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons, Electrochim. Acta, 173 (2015)377-84.
DOI: 10.1016/j.electacta.2015.05.080
Google Scholar
[3]
L. Wei, G. Yushin, Electrical double layer capacitors with activated sucrose-derived carbon electrodes, Carbon, 49 (2011) 4830-38.
DOI: 10.1016/j.carbon.2011.07.003
Google Scholar
[4]
C. Bouchelta, M. S. Medjram, M. Zoubida, F. A. Chekkat., N. Ramdane, J. P. Bellat, Effect of pyrolysis conditions on the porous structure development of date pits activated carbon, J. Anal. Appl. Pyrolisis, 94 (2012) 215-22.
DOI: 10.1016/j.jaap.2011.12.014
Google Scholar
[5]
E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39 (2001) 937–50.
DOI: 10.1016/s0008-6223(00)00183-4
Google Scholar
[6]
A. G. Pandolfo, A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 157 (2006) 11–27.
DOI: 10.1016/j.jpowsour.2006.02.065
Google Scholar
[7]
F. Béguin, E. Raymundo-Piñero, E. Frackowiak, Electrical Double-Layer Capacitors and Pseudocapacitors. In: Be´guin F, Frackowiak E, (ed. ), Carbons for Electrochemical Energy Storage and Conversion Systems. New York, CRC Press/Taylor and Francis Group, 2010 [chapter 8].
DOI: 10.1201/9781420055405-c8
Google Scholar
[8]
L. -T. Song, Z. -Y. Wu, H. -W. Liang, F. Zhou, Z. -Y. Yu, L. Xu, Z. Pan, S. -H. Yun, Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates, Nano Energy 19 (2016).
DOI: 10.1016/j.nanoen.2015.10.004
Google Scholar
[9]
V. Dodevski, M. Stojmenović, M. Vujković, J. Krstić, S. Krstić, D. Bajuk-Bogdanović, B. Kuzmanović, B. Kaluerović, S. Menus, Complex insight into the charge storage behavior of active carbons obtained by carbonization of the plane tree seed, Electrochim. Acta 222 (2016).
DOI: 10.1016/j.electacta.2016.10.182
Google Scholar
[10]
X. L. Chen, W. S. Li, C. L. Tan, W. Li, Y.Z. Wu, Improvement in electrochemical capacitance of carbon materials by nitric acid treatment. J. Power Sources, 184 (2008) 668-74.
DOI: 10.1016/j.jpowsour.2008.05.073
Google Scholar
[11]
T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara, Electric double-layer capacitor using organic electrolyte, J. Power Sources, 60 (1996) 239-47.
DOI: 10.1016/s0378-7753(96)80017-6
Google Scholar
[12]
D. Hulicova, M. Seredych, G. Q. Lu, T. J. Bandosz, Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors, Adv. Funct. Mater., 19 (2009) 438-47.
DOI: 10.1002/adfm.200801236
Google Scholar
[13]
M. Vujković, N. Gavrilov, I. Pašti, J. Krstić, J. Travas-Sejdić, G. Ćirić-Marjanović et al. Superior capacitive and electrocatalytic properties of carbonized nanostructure polyanilne upon a low- temperature hydrothermal treatment, Carbon 64 (2013).
DOI: 10.1016/j.carbon.2013.07.100
Google Scholar
[14]
Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci., 8 (2015) 702-730.
DOI: 10.1039/c4ee03229b
Google Scholar
[15]
L. -T. Song, Z. -Y. Wu, F. Zhou, H. -W. Liang, Z. -Y. Yu, .S. -H. Yu. Sustainable Hydrothermal Carbonization Synthesis of Iron/Nitrogen-Doped Carbon Nanofiber Aerogels as Electrocatalysts for Oxygen Reduction, Small, 46 (2016) 6398–406.
DOI: 10.1002/smll.201602334
Google Scholar
[16]
H. -W. Liang, X. Cao, W. -J. Zhang, H. -T. Lin, F. Zhou, L. -F. Chen, S. -H. Yu. Robust and Highly Effi cient Free-Standing Carbonaceous Nanofi ber Membranes for Water Purifi cation, Adv. Funct. Mater., 21 (2011) 3851–8.
DOI: 10.1002/adfm.201100983
Google Scholar
[17]
H. -W. Liang, Q. -F. Guan, L. -F. Chen, Z. Zhu, W. -J. Zhang, S. -H. Yu. Macroscopic-Scale Template Synthesis of Robust Carbonaceous Nanofiber Hydrogels and Aerogels and Their Applications, Angew. Chem. Int. Ed., 51 (2012) 5101–5.
DOI: 10.1002/anie.201200710
Google Scholar
[18]
J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313 (2006)1760–1763.
DOI: 10.1126/science.1132195
Google Scholar
[19]
Bo Hu, Kan Wang, Liheng Wu, Shu-Hong Yu, Markus Antonietti, and Maria-Magdalena Titirici. Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass, Adv. Mater., 22 (2010) 1–16.
DOI: 10.1002/adma.200902812
Google Scholar
[20]
D. Wang, Z. Geng, B. Li, C. Zhang, High performance electrode materials for electric double–layer capacitors based on biomass–derived activated carbons, Electrochim Acta, 173 (2015) 377–84.
DOI: 10.1016/j.electacta.2015.05.080
Google Scholar
[21]
L. Wei, G. Yushin, Electrical double layer capacitors with activated sucrose–derived carbon electrodes, Carbon, 49(2011) 4830–8.
DOI: 10.1016/j.carbon.2011.07.003
Google Scholar
[22]
J. L. Figueiredo M. F. R. Pereira, M. M. A. Freitas, J. J. M. Órfão, Modification of the surface chemistry of activated carbons, Carbon, 37 (1999) 1379–89.
DOI: 10.1016/s0008-6223(98)00333-9
Google Scholar
[23]
M. Turmuzi, W. R. W. Daud, S. M. Tasirin, M. S. Takriff, S. E. Iyuke. Production of activated carbon from candlenut shell by CO2 activation, Carbon, 42 (2004) 453–55.
DOI: 10.1016/j.carbon.2003.11.015
Google Scholar
[24]
C. Bouchelta, M. S. Medjram, M. Zoubida, F. A. Chekkat, N. Ramdane, J. P. Bellat, Effect of pyrolysis conditions on the porous structure development of date pits activated carbon, J Anal Appl Pyrolisis, 94 (2012) 215–22.
DOI: 10.1016/j.jaap.2011.12.014
Google Scholar
[25]
D. Hulicova, M. Seredych, G. Q. Lu, T. J. Bandosz, Combined Effect of Nitrogen– and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors, Adv Funct Mater, 19 (2009) 438–47.
DOI: 10.1002/adfm.200801236
Google Scholar
[26]
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 7 (2008) 845–54.
Google Scholar
[27]
K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowski, Electrochemical capacitors based on highly porous carbons prepared by KOH activation, Electrochim Acta, 49 (2004) 515–23.
DOI: 10.1016/j.electacta.2003.08.026
Google Scholar
[28]
K. Fic, E. Frackowiak, F. Béguin, Unusual energy enhancement in carbon–based electrochemical capacitors, J. Mater Chem, 22 (2012) 24213–23.
DOI: 10.1039/c2jm35711a
Google Scholar
[29]
S. I. Pyun, C. H. Kim, S. W. Kim, J. H. Kim, Effect of Pore Size Distribution of Activated Carbon Electrodes on Electric Double–Layer Capacitor Performance, J. New Mat. Electrochem Systems, 5 (2002) 289–95.
Google Scholar
[30]
I. I. Gurten, M. Ozmak, E. Yagmur, Z. Aktas, Preparation and characterisation of activated carbon from waste tea using K2CO3. Biomass Bioenergy, 37 (2012) 73–81.
DOI: 10.1016/j.biombioe.2011.12.030
Google Scholar
[31]
T. X. Shang, M. Y. Zhang, X. J. Jin, Easy procedure to prepare nitrogen–containing activated carbons for supercapacitors, RSC Adv., 4 (2014) 39037–44.
DOI: 10.1039/c4ra05881j
Google Scholar
[32]
D.Y. Qu, Studies of the activated carbons used in double layer capacitors, J. Power Sources, 109 (2002) 403–11.
DOI: 10.1016/s0378-7753(02)00108-8
Google Scholar
[33]
AR Mohamed, M Mohammadi, G. N. Darzi, Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renew Sust Energ Rev 14 (2010) 1591–9.
DOI: 10.1016/j.rser.2010.01.024
Google Scholar
[34]
K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985).
DOI: 10.1515/iupac.57.0013
Google Scholar
[35]
M. Kruk, M. Jaroniec, K. P. Gadkaree, Nitrogen adsorption studies of novel synthetic active carbons, J. Colloid Interface Sci., 192 (1997) 250–6.
DOI: 10.1006/jcis.1997.5009
Google Scholar
[36]
M. Jagtoyen, F. Derbyshire, Activated carbons from yellow poplar and white oak by H3PO4activation, Carbon 36 (1998) 1085–97.
DOI: 10.1016/s0008-6223(98)00082-7
Google Scholar
[37]
C. Sellitti, J. L. Koenig, H. Ishida, Surface characterization of graphitized carbon finers by attenuated total reflection fourier transfor imnrared spectroscopy, Carbon 28 (1990) 221–8.
DOI: 10.1016/0008-6223(90)90116-g
Google Scholar
[38]
B.V. Kaludjerović, V.M. Jovanović, S. I. Stevanović, Ž. D. Bogdanov, Characterization of nanoporous carbon fibrous materials obtained by chemical activation of plane tree seed under ultrasonic irradiation, Ultrasonics Sonochemistry, 21 (2014).
DOI: 10.1016/j.ultsonch.2013.09.004
Google Scholar