[1]
X. Huang, M.A. El-Sayed, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Res. 1(1) (2010) 13-28.
DOI: 10.1016/j.jare.2010.02.002
Google Scholar
[2]
X. Zhang, S. Yan, R.D. Tyagi, R.Y. Surampalli, Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates, Chemosphere 82(4) (2011) 489-494.
DOI: 10.1016/j.chemosphere.2010.10.023
Google Scholar
[3]
P.V. Bathrinarayanan, D. Thangavelu, V.K. Muthukumarasamy, Ch. Munusamy, B. Gurunathan, Biological synthesis and characterization of intracellular gold nanoparticles using biomass of Aspergillus fumigatus, Bull. Mater. Sci. 36(7) (2013) 1201-1205.
DOI: 10.1007/s12034-013-0599-0
Google Scholar
[4]
R. Raghavendra, K. Arunachalam, S.K. Annamalai, A.M. Arunachalam, Diagnostic and therapeutic applications of gold nanoparticles, Int. J. Pharm. Pharm. Sci. 6(2) (2014) 74-87.
Google Scholar
[5]
Y. Konishi, T. Tsukiyama, T. Tachimi, N. Saitoh, T. Nomura, S. Nagamine, Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae, Electrochim. Acta 53 (2007) 186-192.
DOI: 10.1016/j.electacta.2007.02.073
Google Scholar
[6]
K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomed. 6(2) (2010) 257-262.
Google Scholar
[7]
A.K. Suresh, D.A. Pelletier, W. Wang, M.L. Broich, J. -W. Moon, B. Gu, D.P. Allison, D.C. Joy, T.J. Phelps, M.J. Doktycz, Biofabrication of discrete spherical gold nanoparticles using the metal –reducing bacterium Shewanella oneidensis, Acta Biomater. 7(5) (2011).
DOI: 10.1016/j.actbio.2011.01.023
Google Scholar
[8]
Ch. Malarkodi, S. Rejeshkumar, M. Vanaja, K. Paulkumar, G. Gnanajobitha, G. Annadurai, Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae, J. Nanostruct. Chem. 3(1) (2013) 30-36.
DOI: 10.1186/2193-8865-3-30
Google Scholar
[9]
P. Premasudha, M. Venkataramana, M. Abirami, P. Vanathi, K. Krishna, R. Rajendran, Biological synthesis and characterization of silver nanoparticles using Eclipta alba leaf extract and evaluation of its cytotoxic and antimocrobial potential, Bull. Mater. Sci. 38(4) (2015).
DOI: 10.1007/s12034-015-0945-5
Google Scholar
[10]
D. Inbakandan, R. Venkatesan, S.A. Khan, Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905), Coll. Surf. B 81(2) (2010) 634-639.
DOI: 10.1016/j.colsurfb.2010.08.016
Google Scholar
[11]
S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, N. Gu, Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata, Mater. Lett. 61 (2007) 3984-3987.
DOI: 10.1016/j.matlet.2007.01.018
Google Scholar
[12]
S. Jain, D.G. Hirst, J.M. O'Sullivan, Gold nanoparticles as novel agents for cancer therapy, Br. J. Radiol. 85(1010) (2012) 101-113.
Google Scholar
[13]
N. Bhandare, A. Narayana, Applications of nanotechnology in cancer: a literature review of imaging and treatment, J. Nucl. Med. Radiat. Ther. 5(4) (2014) 1-9.
Google Scholar
[14]
A.K. Khan, R. Rashid, G. Murtaza, A. Zahra, Gold nanoparticles: synthesis and applications in drug delivery, Trop. J. Pharm. Res. 13(7) (2014) 1169-1177.
DOI: 10.4314/tjpr.v13i7.23
Google Scholar
[15]
V. Vinmathi, S. Justin Packia Jacob, A green and facile approach for the synthesis of silver nanoparticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy, Bull. Mater. Sci. 38(3) (2015).
DOI: 10.1007/s12034-015-0916-x
Google Scholar
[16]
V. Ki, C. Rotstein, Bacterial skin and soft tissue infections in adults: a review of their epidemiology, pathogenesis, diagnosis, treatment and site of care, Can. J. Infect. Dis. Med. Microbiol. 19(2) (2008) 173-184.
DOI: 10.1155/2008/846453
Google Scholar
[17]
Y. Liu, Q. Zhou, Y. Wang, Z. Liu, M. Dong, Y. Wang, X. Li, D. Hu, Negative pressure wound therapy decreases mortality in a murine model of burn-wound sepsis involving Pseudomonas aeruginosa infection, PLoS ONE 9(2) (2014) e90494-e90500.
DOI: 10.1371/journal.pone.0090494
Google Scholar
[18]
K.M. Kumar, B.K. Mandal, M. Sinha, V. Krishnakumar, Terminalia chebula mediated green and rapid synthesis of gold nanoparticles, Spectrochim. Acta A 86 (2012) 490-494.
DOI: 10.1016/j.saa.2011.11.001
Google Scholar
[19]
D. Philip, Synthesis and spectroscopic characterization of gold nanoparticles, Spectrochim. Acta A 71(1) (2008) 80-85.
Google Scholar
[20]
K. Wagers, T. Chui, S. Adem, Effect of pH on the stability of gold nanoparticles and their application for melamine detection in infant formula, IOSR-JAC 7(8) (2014) 15-20.
DOI: 10.9790/5736-07821520
Google Scholar
[21]
S.L. Smitha, D. Philip, K.G. Gopchandran, Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth, Spectrochim. Acta A 74(3) (2009) 735-739.
DOI: 10.1016/j.saa.2009.08.007
Google Scholar
[22]
S. Szunerits, J. Spadavecchia, R. Boukherroub, Surface plasmon resonance: signal amplification using colloidal gold nanoparticles for enhanced sensitivity, Rev. Anal. Chem. 33(3) (2014) 153-164.
DOI: 10.1515/nano.0040.00010
Google Scholar
[23]
X.D. Li, T.P. Chen, Y. Liu, K.C. Leong, Evolution of the localized surface plasmon resonance and electron confinement effect with the film thickness in ultrathin Au films, J. Nanopart. Res. 17(67) (2015) doi: 10. 1007/s11051-015-2880-1.
DOI: 10.1007/s11051-015-2880-1
Google Scholar
[24]
A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, S. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphyloccocus aureus and Escherichia coli, Nanomed. Nanotechnol. 3(2) (2007).
DOI: 10.1016/j.nano.2007.02.001
Google Scholar
[25]
P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry, R. Kumar, Bioreduction of AuCl4-ions by the fungus Verticillium sp. and surface trapping of the gold nanoparticles formed, Angew. Chem. Int. Ed. 40(19) (2001).
DOI: 10.1002/1521-3773(20011001)40:19<3585::aid-anie3585>3.0.co;2-k
Google Scholar
[26]
M.I. Husseiny, M. Abd El-Aziz, Y. Badr, M.A. Mahmoud, Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa, Spectrochim. Acta A 67 (2007) 1003-1006.
DOI: 10.1016/j.saa.2006.09.028
Google Scholar
[27]
H. Wang, T.B. Huff, D.A. Zweifel, W. He, P.S. Low, A. Wei, J.X. Cheng, In vitro and in vivo two-photon luminescence imaging of single gold nanorods, Proc. Natl. Acad. Sci. U.S.A. 102(44) (2005) 15752-15756.
DOI: 10.1073/pnas.0504892102
Google Scholar
[28]
A. Lin, D.H. Son, I.H. Ahn, G.H. Song, W.T. Han, Visible to infrared photoluminescence from gold nanoparticles embedded in germano-silicate glass fiber, Opt. Express 15(10) (2007) 6374-6379.
DOI: 10.1364/oe.15.006374
Google Scholar
[29]
D. Philip, Honey mediated green synthesis of gold nanoparticles, Spectrochim. Acta A 73(4) (2009) 650-653.
Google Scholar
[30]
M.M.H. Khalil, E.H. Ismail, F. El-Magdoub, Biosynthesis of Au nanoparticles using olive leaf extract, Arab. J. Chem. 5(4) (2012) 431-437.
DOI: 10.1016/j.arabjc.2010.11.011
Google Scholar
[31]
E.G. Matveeva, T. Shtoyko, I. Gryczynski, I. Akopova, Z. Gryczynski, Fluorescence quenching/enhancement surface assays: signac manipulation using silver-coated gold nanoparticles, Chem. Phys. Lett. 454(1-3) (2008) 85-90.
DOI: 10.1016/j.cplett.2008.01.075
Google Scholar
[32]
X. Ke, D. Wang, Ch. Chen, A. Yang, Y. Han, L. Ren, D. Li, H. Wang, Co-enhancement of fluorescence and singlet oxygen generation by silica-coated gold nanorods core-shell nanoparticle, Nanoscale Res. Lett. 9(666) (2014).
DOI: 10.1186/1556-276x-9-666
Google Scholar
[33]
P. Sanpui, S.B. Pandey, S.S. Ghosh, A. Chattopadhyay, Green fluorescent protein for in situ synthesis of highly uniform Au nanoparticles and monitoring protein denaturation, J. Coll. Interf. Sci. 326(1) (2008) 129-137.
DOI: 10.1016/j.jcis.2008.07.015
Google Scholar
[34]
B. Zhong, X. Zu, G. Yi, H. Huang, M. Zhang, H. Luo, Fluorescence enhancement of the conjugated polymer films based on well-ordered Au nanoparticle arrays, J. Nanopart. Res. 18 (2016) 281-291.
DOI: 10.1007/s11051-016-3588-6
Google Scholar
[35]
K.H. Lee, S.J. Chen, J.Y. Cheng, J.T. Shiea, H.T. Chang, Fluorescence and interactions with thiol compounds of Nile Red-adsorbed gold nanoparticles, J. Coll. Interf. Sci. 307(2) (2007) 340-348.
DOI: 10.1016/j.jcis.2006.12.013
Google Scholar
[36]
N. Kato, F. Caruso, Homogeneous, competitive fluorescence quenching immunoassay based on gold nanoparticle/polyelectrolyte coated latex particles, J. Phys. Chem. B 109(42) (2005) 19604-19612.
DOI: 10.1021/jp052748f
Google Scholar
[37]
P. Anger, P. Bharadwaj, L. Novotny, Enhancement of quenching of single-molecule fluorescence, Phys. Rev. Let. 96(11) (2006) doi: 0031-9007/06/96(11)/113002(4).
DOI: 10.1103/physrevlett.96.113002
Google Scholar
[38]
Ch. Xue, Y. Xue, L. Dai, A. Urbas, Q. Li, Size- and shape-dependent fluorescence quenching of gold nanoparticles on perylene dye, Adv. Optical Mater. (2013) doi: 10. 1002/adom. 201300175.
DOI: 10.1002/adom.201370052
Google Scholar
[39]
A. Azam, F. Ahmed, N. Arshi, M. Chaman, A.H. Naqvi, One step synthesis and characterization of gold nanoparticles and their antibacterial activities against E. coli (ATCC 25922 strain), Int. J. Theor. App. Sci. 1(2) (2009) 1-4.
Google Scholar
[40]
R. Balagurunathan, M. Radhakrishnan, R.B. Rajendran, D. Velmurugan, Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10, Indian J. Biochem. Biophys. 48 (2011) 331-335.
Google Scholar
[41]
S. Shamaila, N. Zafar, S. Riaz, R. Sharif, J. Nazir, S. Naseem, Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen, Nanomater. 6(4) (2016) 71-81.
DOI: 10.3390/nano6040071
Google Scholar
[42]
S.A. Kumar, M.K. Abyaneh, S.W. Gosavi, S.K. Kulkarni, A. Ahmad, M.I. Khan, Sulfite reductase-mediated synthesis of gold nanoparticles capped with phytochelatin, Biotechnol. Appl. Biochem. 47 (2007) 191-195.
DOI: 10.1042/ba20060205
Google Scholar
[43]
J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater. 4(3) (2008) 707-716.
DOI: 10.1016/j.actbio.2007.11.006
Google Scholar
[44]
E. Marsili, D.B. Baron, I.D. Shikhare, D. Coursolle, J.A. Gralnick, D.R. Bond, Shewanella secretes flavins that mediate extracellular electron transfer, Proc. Natl. Acad. Sci. U.S.A. 105(10) (2008) 3968-3973.
DOI: 10.1073/pnas.0710525105
Google Scholar
[45]
A. Rai, A. Prabhune, C.C. Perry, Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings, J. Mater. Chem. 20 (2010) 6789-6798.
DOI: 10.1039/c0jm00817f
Google Scholar
[46]
T. Jumaa, M. Chasib, M.K. Hamid, R. Al-Haddad, Effect of the electric field on the antibacterial activity of Au nanoparticles on some Gram-positive and Gram-negative bacteria, Nanosci. Nanotech. Res. 2(1) (2014) 1-7.
Google Scholar
[47]
E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3) (2005) 325-327.
DOI: 10.1002/smll.200400093
Google Scholar
[48]
R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R.R. Bhonde, M. Sastry, Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview, Langmuir 21(23) (2005) 10644-10654.
DOI: 10.1021/la0513712
Google Scholar
[49]
S. Senapati, A. Ahmad, M.I. Khan, M. Sastry, R. Kumar, Extracellular biosynthesis of biometallic Au-Ag alloy nanoparticles, Small 1(5) (2005) 517-520.
DOI: 10.1002/smll.200400053
Google Scholar
[50]
R. Geethalakshmi, D.V.L. Sarada, Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties, Int. J. Nanomed. 7 (2012) 5375-5384.
DOI: 10.2147/ijn.s36516
Google Scholar
[51]
P. Manivasagan, J. Venkatesan, K. Sivakumar, S.K. Kim, Antibacteria mediated synthesis of nanoparticles and their biological properties, Crit. Rev. Microbiol. 42(2) (2016) 209-221.
Google Scholar
[52]
V. Armendariz, I. Herrera, J.R. Peralta-Videa, M. Jose-Yacaman, H. Troiani, P. Santiago, J.L. Gardea-Torresdey, Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnolog, J. Nanopart. Res. 6(4) (2004).
DOI: 10.1007/s11051-004-0741-4
Google Scholar