Eco-Friendly and Temperature Dependent Biosynthesis of Gold Nanoparticles Using the Bacterium Pseudomonas aeruginosa: Characterization and Antibacterial Activity

Article Preview

Abstract:

Abstract. In this paper we report the biological synthesis of gold nanoparticles (GNPs) by the reduction of gold ions using a suspension and supernatant of P. aeruginosa. The biosynthesis method was straightforward and yielded good results without using toxic chemicals. The size distribution of the gold nanoparticles synthesized by P. aeruginosa at higher temperatures was larger than that synthesized at lower temperatures. The GNPs morphology was isotropic at various temperatures. With an increase in the temperature, the stability of the GNPs decreased. The absorption and fluorescence spectra accorded well with the size distribution of the particles, with the nanoparticle size increasing as the absorption and fluorescence increased too. The optical properties of the GNPs observed in the study accorded well with the scanning electron microscopy (SEM) observations. The visible photoluminescence (PL) around 435 nm indicated the possible use of the obtained colloids, which consisted of GNPs and capping biomaterial, in therapeutic applications. Moreover, the synthesized GNPs showed good antibacterial activity toward E. coli indicating their potential in biological applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-124

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Huang, M.A. El-Sayed, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Res. 1(1) (2010) 13-28.

DOI: 10.1016/j.jare.2010.02.002

Google Scholar

[2] X. Zhang, S. Yan, R.D. Tyagi, R.Y. Surampalli, Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates, Chemosphere 82(4) (2011) 489-494.

DOI: 10.1016/j.chemosphere.2010.10.023

Google Scholar

[3] P.V. Bathrinarayanan, D. Thangavelu, V.K. Muthukumarasamy, Ch. Munusamy, B. Gurunathan, Biological synthesis and characterization of intracellular gold nanoparticles using biomass of Aspergillus fumigatus, Bull. Mater. Sci. 36(7) (2013) 1201-1205.

DOI: 10.1007/s12034-013-0599-0

Google Scholar

[4] R. Raghavendra, K. Arunachalam, S.K. Annamalai, A.M. Arunachalam, Diagnostic and therapeutic applications of gold nanoparticles, Int. J. Pharm. Pharm. Sci. 6(2) (2014) 74-87.

Google Scholar

[5] Y. Konishi, T. Tsukiyama, T. Tachimi, N. Saitoh, T. Nomura, S. Nagamine, Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae, Electrochim. Acta 53 (2007) 186-192.

DOI: 10.1016/j.electacta.2007.02.073

Google Scholar

[6] K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomed. 6(2) (2010) 257-262.

Google Scholar

[7] A.K. Suresh, D.A. Pelletier, W. Wang, M.L. Broich, J. -W. Moon, B. Gu, D.P. Allison, D.C. Joy, T.J. Phelps, M.J. Doktycz, Biofabrication of discrete spherical gold nanoparticles using the metal –reducing bacterium Shewanella oneidensis, Acta Biomater. 7(5) (2011).

DOI: 10.1016/j.actbio.2011.01.023

Google Scholar

[8] Ch. Malarkodi, S. Rejeshkumar, M. Vanaja, K. Paulkumar, G. Gnanajobitha, G. Annadurai, Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae, J. Nanostruct. Chem. 3(1) (2013) 30-36.

DOI: 10.1186/2193-8865-3-30

Google Scholar

[9] P. Premasudha, M. Venkataramana, M. Abirami, P. Vanathi, K. Krishna, R. Rajendran, Biological synthesis and characterization of silver nanoparticles using Eclipta alba leaf extract and evaluation of its cytotoxic and antimocrobial potential, Bull. Mater. Sci. 38(4) (2015).

DOI: 10.1007/s12034-015-0945-5

Google Scholar

[10] D. Inbakandan, R. Venkatesan, S.A. Khan, Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905), Coll. Surf. B 81(2) (2010) 634-639.

DOI: 10.1016/j.colsurfb.2010.08.016

Google Scholar

[11] S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, N. Gu, Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata, Mater. Lett. 61 (2007) 3984-3987.

DOI: 10.1016/j.matlet.2007.01.018

Google Scholar

[12] S. Jain, D.G. Hirst, J.M. O'Sullivan, Gold nanoparticles as novel agents for cancer therapy, Br. J. Radiol. 85(1010) (2012) 101-113.

Google Scholar

[13] N. Bhandare, A. Narayana, Applications of nanotechnology in cancer: a literature review of imaging and treatment, J. Nucl. Med. Radiat. Ther. 5(4) (2014) 1-9.

Google Scholar

[14] A.K. Khan, R. Rashid, G. Murtaza, A. Zahra, Gold nanoparticles: synthesis and applications in drug delivery, Trop. J. Pharm. Res. 13(7) (2014) 1169-1177.

DOI: 10.4314/tjpr.v13i7.23

Google Scholar

[15] V. Vinmathi, S. Justin Packia Jacob, A green and facile approach for the synthesis of silver nanoparticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy, Bull. Mater. Sci. 38(3) (2015).

DOI: 10.1007/s12034-015-0916-x

Google Scholar

[16] V. Ki, C. Rotstein, Bacterial skin and soft tissue infections in adults: a review of their epidemiology, pathogenesis, diagnosis, treatment and site of care, Can. J. Infect. Dis. Med. Microbiol. 19(2) (2008) 173-184.

DOI: 10.1155/2008/846453

Google Scholar

[17] Y. Liu, Q. Zhou, Y. Wang, Z. Liu, M. Dong, Y. Wang, X. Li, D. Hu, Negative pressure wound therapy decreases mortality in a murine model of burn-wound sepsis involving Pseudomonas aeruginosa infection, PLoS ONE 9(2) (2014) e90494-e90500.

DOI: 10.1371/journal.pone.0090494

Google Scholar

[18] K.M. Kumar, B.K. Mandal, M. Sinha, V. Krishnakumar, Terminalia chebula mediated green and rapid synthesis of gold nanoparticles, Spectrochim. Acta A 86 (2012) 490-494.

DOI: 10.1016/j.saa.2011.11.001

Google Scholar

[19] D. Philip, Synthesis and spectroscopic characterization of gold nanoparticles, Spectrochim. Acta A 71(1) (2008) 80-85.

Google Scholar

[20] K. Wagers, T. Chui, S. Adem, Effect of pH on the stability of gold nanoparticles and their application for melamine detection in infant formula, IOSR-JAC 7(8) (2014) 15-20.

DOI: 10.9790/5736-07821520

Google Scholar

[21] S.L. Smitha, D. Philip, K.G. Gopchandran, Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth, Spectrochim. Acta A 74(3) (2009) 735-739.

DOI: 10.1016/j.saa.2009.08.007

Google Scholar

[22] S. Szunerits, J. Spadavecchia, R. Boukherroub, Surface plasmon resonance: signal amplification using colloidal gold nanoparticles for enhanced sensitivity, Rev. Anal. Chem. 33(3) (2014) 153-164.

DOI: 10.1515/nano.0040.00010

Google Scholar

[23] X.D. Li, T.P. Chen, Y. Liu, K.C. Leong, Evolution of the localized surface plasmon resonance and electron confinement effect with the film thickness in ultrathin Au films, J. Nanopart. Res. 17(67) (2015) doi: 10. 1007/s11051-015-2880-1.

DOI: 10.1007/s11051-015-2880-1

Google Scholar

[24] A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, S. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphyloccocus aureus and Escherichia coli, Nanomed. Nanotechnol. 3(2) (2007).

DOI: 10.1016/j.nano.2007.02.001

Google Scholar

[25] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry, R. Kumar, Bioreduction of AuCl4-ions by the fungus Verticillium sp. and surface trapping of the gold nanoparticles formed, Angew. Chem. Int. Ed. 40(19) (2001).

DOI: 10.1002/1521-3773(20011001)40:19<3585::aid-anie3585>3.0.co;2-k

Google Scholar

[26] M.I. Husseiny, M. Abd El-Aziz, Y. Badr, M.A. Mahmoud, Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa, Spectrochim. Acta A 67 (2007) 1003-1006.

DOI: 10.1016/j.saa.2006.09.028

Google Scholar

[27] H. Wang, T.B. Huff, D.A. Zweifel, W. He, P.S. Low, A. Wei, J.X. Cheng, In vitro and in vivo two-photon luminescence imaging of single gold nanorods, Proc. Natl. Acad. Sci. U.S.A. 102(44) (2005) 15752-15756.

DOI: 10.1073/pnas.0504892102

Google Scholar

[28] A. Lin, D.H. Son, I.H. Ahn, G.H. Song, W.T. Han, Visible to infrared photoluminescence from gold nanoparticles embedded in germano-silicate glass fiber, Opt. Express 15(10) (2007) 6374-6379.

DOI: 10.1364/oe.15.006374

Google Scholar

[29] D. Philip, Honey mediated green synthesis of gold nanoparticles, Spectrochim. Acta A 73(4) (2009) 650-653.

Google Scholar

[30] M.M.H. Khalil, E.H. Ismail, F. El-Magdoub, Biosynthesis of Au nanoparticles using olive leaf extract, Arab. J. Chem. 5(4) (2012) 431-437.

DOI: 10.1016/j.arabjc.2010.11.011

Google Scholar

[31] E.G. Matveeva, T. Shtoyko, I. Gryczynski, I. Akopova, Z. Gryczynski, Fluorescence quenching/enhancement surface assays: signac manipulation using silver-coated gold nanoparticles, Chem. Phys. Lett. 454(1-3) (2008) 85-90.

DOI: 10.1016/j.cplett.2008.01.075

Google Scholar

[32] X. Ke, D. Wang, Ch. Chen, A. Yang, Y. Han, L. Ren, D. Li, H. Wang, Co-enhancement of fluorescence and singlet oxygen generation by silica-coated gold nanorods core-shell nanoparticle, Nanoscale Res. Lett. 9(666) (2014).

DOI: 10.1186/1556-276x-9-666

Google Scholar

[33] P. Sanpui, S.B. Pandey, S.S. Ghosh, A. Chattopadhyay, Green fluorescent protein for in situ synthesis of highly uniform Au nanoparticles and monitoring protein denaturation, J. Coll. Interf. Sci. 326(1) (2008) 129-137.

DOI: 10.1016/j.jcis.2008.07.015

Google Scholar

[34] B. Zhong, X. Zu, G. Yi, H. Huang, M. Zhang, H. Luo, Fluorescence enhancement of the conjugated polymer films based on well-ordered Au nanoparticle arrays, J. Nanopart. Res. 18 (2016) 281-291.

DOI: 10.1007/s11051-016-3588-6

Google Scholar

[35] K.H. Lee, S.J. Chen, J.Y. Cheng, J.T. Shiea, H.T. Chang, Fluorescence and interactions with thiol compounds of Nile Red-adsorbed gold nanoparticles, J. Coll. Interf. Sci. 307(2) (2007) 340-348.

DOI: 10.1016/j.jcis.2006.12.013

Google Scholar

[36] N. Kato, F. Caruso, Homogeneous, competitive fluorescence quenching immunoassay based on gold nanoparticle/polyelectrolyte coated latex particles, J. Phys. Chem. B 109(42) (2005) 19604-19612.

DOI: 10.1021/jp052748f

Google Scholar

[37] P. Anger, P. Bharadwaj, L. Novotny, Enhancement of quenching of single-molecule fluorescence, Phys. Rev. Let. 96(11) (2006) doi: 0031-9007/06/96(11)/113002(4).

DOI: 10.1103/physrevlett.96.113002

Google Scholar

[38] Ch. Xue, Y. Xue, L. Dai, A. Urbas, Q. Li, Size- and shape-dependent fluorescence quenching of gold nanoparticles on perylene dye, Adv. Optical Mater. (2013) doi: 10. 1002/adom. 201300175.

DOI: 10.1002/adom.201370052

Google Scholar

[39] A. Azam, F. Ahmed, N. Arshi, M. Chaman, A.H. Naqvi, One step synthesis and characterization of gold nanoparticles and their antibacterial activities against E. coli (ATCC 25922 strain), Int. J. Theor. App. Sci. 1(2) (2009) 1-4.

Google Scholar

[40] R. Balagurunathan, M. Radhakrishnan, R.B. Rajendran, D. Velmurugan, Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10, Indian J. Biochem. Biophys. 48 (2011) 331-335.

Google Scholar

[41] S. Shamaila, N. Zafar, S. Riaz, R. Sharif, J. Nazir, S. Naseem, Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen, Nanomater. 6(4) (2016) 71-81.

DOI: 10.3390/nano6040071

Google Scholar

[42] S.A. Kumar, M.K. Abyaneh, S.W. Gosavi, S.K. Kulkarni, A. Ahmad, M.I. Khan, Sulfite reductase-mediated synthesis of gold nanoparticles capped with phytochelatin, Biotechnol. Appl. Biochem. 47 (2007) 191-195.

DOI: 10.1042/ba20060205

Google Scholar

[43] J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater. 4(3) (2008) 707-716.

DOI: 10.1016/j.actbio.2007.11.006

Google Scholar

[44] E. Marsili, D.B. Baron, I.D. Shikhare, D. Coursolle, J.A. Gralnick, D.R. Bond, Shewanella secretes flavins that mediate extracellular electron transfer, Proc. Natl. Acad. Sci. U.S.A. 105(10) (2008) 3968-3973.

DOI: 10.1073/pnas.0710525105

Google Scholar

[45] A. Rai, A. Prabhune, C.C. Perry, Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings, J. Mater. Chem. 20 (2010) 6789-6798.

DOI: 10.1039/c0jm00817f

Google Scholar

[46] T. Jumaa, M. Chasib, M.K. Hamid, R. Al-Haddad, Effect of the electric field on the antibacterial activity of Au nanoparticles on some Gram-positive and Gram-negative bacteria, Nanosci. Nanotech. Res. 2(1) (2014) 1-7.

Google Scholar

[47] E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3) (2005) 325-327.

DOI: 10.1002/smll.200400093

Google Scholar

[48] R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R.R. Bhonde, M. Sastry, Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview, Langmuir 21(23) (2005) 10644-10654.

DOI: 10.1021/la0513712

Google Scholar

[49] S. Senapati, A. Ahmad, M.I. Khan, M. Sastry, R. Kumar, Extracellular biosynthesis of biometallic Au-Ag alloy nanoparticles, Small 1(5) (2005) 517-520.

DOI: 10.1002/smll.200400053

Google Scholar

[50] R. Geethalakshmi, D.V.L. Sarada, Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties, Int. J. Nanomed. 7 (2012) 5375-5384.

DOI: 10.2147/ijn.s36516

Google Scholar

[51] P. Manivasagan, J. Venkatesan, K. Sivakumar, S.K. Kim, Antibacteria mediated synthesis of nanoparticles and their biological properties, Crit. Rev. Microbiol. 42(2) (2016) 209-221.

Google Scholar

[52] V. Armendariz, I. Herrera, J.R. Peralta-Videa, M. Jose-Yacaman, H. Troiani, P. Santiago, J.L. Gardea-Torresdey, Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnolog, J. Nanopart. Res. 6(4) (2004).

DOI: 10.1007/s11051-004-0741-4

Google Scholar