Rattle-Type Diamine-Functionalized Mesoporous Silica Sphere for Carbon Dioxide Adsorption

Article Preview

Abstract:

A rattle-type diamine-functionalized mesoporous silica sphere (DA-RMSS) was fabricated stepwise using a self-templating method through cationic surfactant assisted selective etching strategy. The rattle-type morphology of the obtained DA-RMSS material was disclosed by transmission electron microscopy, while its chemical composition was characterized by CHN elemental analysis, Fourier transform infrared spectroscopy, and solid-state 29Si cross-polarization/magic-angle-spinning nuclear magnetic resonance spectroscopic measurement, which corroborates the successful formation of siloxane network and the incorporation of organic component. Moreover, nitrogen adsorption–desorption isotherm measurement was conducted to reveal that DA-RMSS possesses large Brunauer–Emmett–Teller (BET) specific surface area of 814 m2g–1, pore volume of 0.78 cm3g–1, and narrow pore size distribution centered at 3.0 nm. Furthermore, its uptake property on carbon dioxide was also investigated in this contribution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-21

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Li, J. Shi, Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications, Adv. Mater. 26 (2014) 3176–3205.

DOI: 10.1002/adma.201305319

Google Scholar

[2] W. Li, D. Zhao, Extension of the Stöber Method to Construct Mesoporous SiO2 and TiO2 Shells for Uniform Multifunctional Core-Shell Structures, Adv. Mater. 25 (2013) 142–149.

DOI: 10.1002/adma.201203547

Google Scholar

[3] S.-H. Wu, C.-Y. Mou, H.-P. Lin, Synthesis of mesoporous silica nanoparticles, Chem. Soc. Rev. 42 (2013) 3862–3875.

Google Scholar

[4] Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang, S. Wang, Mesoporous silica nanoparticles in drug delivery and biomedical applications, Nanomedicine Nanotechnology, Biol. Med. 11 (2015) 313–327.

DOI: 10.1016/j.nano.2014.09.014

Google Scholar

[5] J.-C. Song, F.-F. Xue, X.-X. Zhang, Z.-Y. Lu, Z.-Y. Sun, Synthesis of yolk–shell mesoporous silica nanoparticles via a facile one-pot approach, Chem. Commun. 53 (2017) 3761–3764.

DOI: 10.1039/c7cc01424d

Google Scholar

[6] G. Song, C. Li, J. Hu, R. Zou, K. Xu, L. Han, Q. Wang, J. Yang, Z. Chen, Z. Qin, K. Ruan, R. Hu, A simple transformation from silica core–shell–shell to yolk–shell nanostructures: a useful platform for effective cell imaging and drug delivery, J. Mater. Chem. 22 (2012).

DOI: 10.1039/c2jm32382f

Google Scholar

[7] H. Zou, R. Wang, X. Li, X. Wang, S. Zeng, S. Ding, L. Li, Z. Zhang, S. Qiu, An organosilane-directed growth-induced etching strategy for preparing hollow/yolk–shell mesoporous organosilica nanospheres with perpendicular mesochannels and amphiphilic frameworks, J. Mater. Chem. A. 2 (2014).

DOI: 10.1039/c4ta01943a

Google Scholar

[8] Q. Zhang, T. Zhang, J. Ge, Y. Yin, Permeable silica shell through surface-protected etching, Nano Lett. 8 (2008) 2867–2871.

DOI: 10.1021/nl8016187

Google Scholar

[9] Q. Zhang, J. Ge, J. Goebl, Y. Hu, Z. Lu, Y. Yin, Rattle-type silica colloidal particles prepared by a surface-protected etching process, Nano Res. 2 (2009) 583–591.

DOI: 10.1007/s12274-009-9060-5

Google Scholar

[10] K. Zhang, H. Chen, Y. Zheng, Y. Chen, M. Ma, X. Wang, L. Wang, D. Zeng, J. Shi, A facile in situ hydrophobic layer protected selective etching strategy for the synchronous synthesis/modification of hollow or rattle-type silica nanoconstructs, J. Mater. Chem. 22 (2012).

DOI: 10.1039/c2jm31504a

Google Scholar

[11] X. Liu, Z. Jiao, T. Song, M. Wu, H. Zhang, Surfactant-assisted selective etching strategy for generation of rattle-like mesoporous silica nanoparticles, J. Colloid Interface Sci. 490 (2017) 497–504.

DOI: 10.1016/j.jcis.2016.11.083

Google Scholar

[12] J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O'Hare, Z. Zhong, Recent advances in solid sorbents for CO2 capture and new development trends, Energy Environ. Sci. 7 (2014) 3478–3518.

DOI: 10.1039/c4ee01647e

Google Scholar

[13] F. Shakerian, K.-H. Kim, J.E. Szulejko, J.-W. Park, A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture, Appl. Energy. 148 (2015) 10–22.

DOI: 10.1016/j.apenergy.2015.03.026

Google Scholar

[14] B. Dutcher, M. Fan, A.G. Russell, Amine-Based CO2 Capture Technology Development from the Beginning of 2013—A Review, ACS Appl. Mater. Interfaces. 7 (2015) 2137–2148.

DOI: 10.1021/am507465f

Google Scholar

[15] Q. Wang, J. Luo, Z. Zhong, A. Borgna, CO2 capture by solid adsorbents and their applications: current status and new trends, Energy Environ. Sci. 4 (2011) 42–55.

DOI: 10.1039/c0ee00064g

Google Scholar

[16] S. Bai, J. Liu, J. Gao, Q. Yang, C. Li, Hydrolysis controlled synthesis of amine-functionalized hollow ethane–silica nanospheres as adsorbents for CO2 capture, Microporous Mesoporous Mater. 151 (2012) 474–480.

DOI: 10.1016/j.micromeso.2011.09.014

Google Scholar

[17] J.A. Cecilia, E. Vilarrasa-García, C. García-Sancho, R.M.A. Saboya, D.C.S. Azevedo, C.L. Cavalcante, E. Rodríguez-Castellón, Functionalization of hollow silica microspheres by impregnation or grafted of amine groups for the CO2 capture, Int. J. Greenh. Gas Control. 52 (2016).

DOI: 10.1016/j.ijggc.2016.07.018

Google Scholar

[18] X. Fang, C. Chen, Z. Liu, P. Liu, N. Zheng, A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres, Nanoscale. 3 (2011) 1632–1639.

DOI: 10.1039/c0nr00893a

Google Scholar

[19] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (1985) 603–619.

DOI: 10.1351/pac198557040603

Google Scholar

[20] Z. Zhou, A.W. Franz, M. Hartmann, A. Seifert, T.J.J. Mu, W.R. Thiel, H. Heine, V. Uni, Novel Organic / Inorganic Hybrid Materials by Covalent Anchoring of Phenothiazines on MCM-41, Chem. Mater. 20 (2008) 4986–4992.

DOI: 10.1021/cm800804t

Google Scholar

[21] B. Yan, Y. Li, B. Zhou, Covalently bonding assembly and photophysical properties of luminescent molecular hybrids Eu–TTA–Si and Eu–TTASi–MCM-41 by modified thenoyltrifluoroacetone, Microporous Mesoporous Mater. 120 (2009) 317–324.

DOI: 10.1016/j.micromeso.2008.11.021

Google Scholar

[22] L. You, T. Wang, J. Ge, When Mesoporous Silica Meets the Alkaline Polyelectrolyte: A Controllable Synthesis of Functional and Hollow Nanostructures with a Porous Shell, Chem. - A Eur. J. 19 (2013) 2142–2149.

DOI: 10.1002/chem.201203308

Google Scholar

[23] K. Hayashi, M. Nakamura, H. Miki, S. Ozaki, M. Abe, T. Matsumoto, K. Ishimura, Near-Infrared Fluorescent Silica/Porphyrin Hybrid Nanorings for In Vivo Cancer Imaging, Adv. Funct. Mater. 22 (2012) 3539–3546.

DOI: 10.1002/adfm.201200219

Google Scholar

[24] E.-Y. Jeong, A. Burri, S.-Y. Lee, S.-E. Park, Synthesis and catalytic behavior of tetrakis(4-carboxyphenyl) porphyrin-periodic mesoporous organosilica, J. Mater. Chem. 20 (2010) 10869–10875.

DOI: 10.1039/c0jm02591g

Google Scholar

[25] X. Huang, Y.-C. Zhao, B.-H. Han, Supramolecular organic network assembled from quadruple hydrogen-bonding motifs, Chem. Commun. 52 (2016) 6597–6600.

DOI: 10.1039/c6cc02206e

Google Scholar

[26] H. Li, X. Ding, Y.-C. Zhao, B.-H. Han, Preparation of mannitol-based ketal-linked porous organic polymers and their application for selective capture of carbon dioxide, Polymer. 89 (2016) 112–118.

DOI: 10.1016/j.polymer.2016.02.024

Google Scholar

[27] X. Ding, H. Li, Y.-C. Zhao, B.-H. Han, Mannitol-based acetal-linked porous organic polymers for selective capture of carbon dioxide over methane, Polym. Chem. 6 (2015) 5305–5312.

DOI: 10.1039/c5py00682a

Google Scholar

[28] Z.-Y. Sui, Q.-H. Meng, J.-T. Li, J.-H. Zhu, Y. Cui, B.-H. Han, High surface area porous carbons produced by steam activation of graphene aerogels, J. Mater. Chem. A. 2 (2014) 9891–9898.

DOI: 10.1039/c4ta01387e

Google Scholar

[29] Z.-Y. Sui, Y.-N. Meng, P.-W. Xiao, Z.-Q. Zhao, Z.-X. Wei, B.-H. Han, Nitrogen-Doped Graphene Aerogels as Efficient Supercapacitor Electrodes and Gas Adsorbents, ACS Appl. Mater. Interfaces. 7 (2015) 1431–1438.

DOI: 10.1021/am5042065

Google Scholar

[30] Z.-Y. Sui, B.-H. Han, Effect of surface chemistry and textural properties on carbon dioxide uptake in hydrothermally reduced graphene oxide, Carbon 82 (2015) 590–598.

DOI: 10.1016/j.carbon.2014.11.014

Google Scholar

[31] I. A. A. C. Esteves, M. S. S. Lopes, P. M. C. Nunes, J. P. B. Mota, Adsorption of Natural Gas and Biogas Components on Activated Carbon, Sep. Purif. Technol. 62 (2008) 281–296.

DOI: 10.1016/j.seppur.2008.01.027

Google Scholar

[32] T. Wang, Y.-C. Zhao, M. Luo, L.-M. Zhang, Y. Cui, C.-S. Zhang, B.-H. Han, Facile One-Pot Synthesis of Glycoluril-Based Porous Organic Polymers, Polymer. 60 (2015) 26–31.

DOI: 10.1016/j.polymer.2014.12.072

Google Scholar