[1]
Y. Li, J. Shi, Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications, Adv. Mater. 26 (2014) 3176–3205.
DOI: 10.1002/adma.201305319
Google Scholar
[2]
W. Li, D. Zhao, Extension of the Stöber Method to Construct Mesoporous SiO2 and TiO2 Shells for Uniform Multifunctional Core-Shell Structures, Adv. Mater. 25 (2013) 142–149.
DOI: 10.1002/adma.201203547
Google Scholar
[3]
S.-H. Wu, C.-Y. Mou, H.-P. Lin, Synthesis of mesoporous silica nanoparticles, Chem. Soc. Rev. 42 (2013) 3862–3875.
Google Scholar
[4]
Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang, S. Wang, Mesoporous silica nanoparticles in drug delivery and biomedical applications, Nanomedicine Nanotechnology, Biol. Med. 11 (2015) 313–327.
DOI: 10.1016/j.nano.2014.09.014
Google Scholar
[5]
J.-C. Song, F.-F. Xue, X.-X. Zhang, Z.-Y. Lu, Z.-Y. Sun, Synthesis of yolk–shell mesoporous silica nanoparticles via a facile one-pot approach, Chem. Commun. 53 (2017) 3761–3764.
DOI: 10.1039/c7cc01424d
Google Scholar
[6]
G. Song, C. Li, J. Hu, R. Zou, K. Xu, L. Han, Q. Wang, J. Yang, Z. Chen, Z. Qin, K. Ruan, R. Hu, A simple transformation from silica core–shell–shell to yolk–shell nanostructures: a useful platform for effective cell imaging and drug delivery, J. Mater. Chem. 22 (2012).
DOI: 10.1039/c2jm32382f
Google Scholar
[7]
H. Zou, R. Wang, X. Li, X. Wang, S. Zeng, S. Ding, L. Li, Z. Zhang, S. Qiu, An organosilane-directed growth-induced etching strategy for preparing hollow/yolk–shell mesoporous organosilica nanospheres with perpendicular mesochannels and amphiphilic frameworks, J. Mater. Chem. A. 2 (2014).
DOI: 10.1039/c4ta01943a
Google Scholar
[8]
Q. Zhang, T. Zhang, J. Ge, Y. Yin, Permeable silica shell through surface-protected etching, Nano Lett. 8 (2008) 2867–2871.
DOI: 10.1021/nl8016187
Google Scholar
[9]
Q. Zhang, J. Ge, J. Goebl, Y. Hu, Z. Lu, Y. Yin, Rattle-type silica colloidal particles prepared by a surface-protected etching process, Nano Res. 2 (2009) 583–591.
DOI: 10.1007/s12274-009-9060-5
Google Scholar
[10]
K. Zhang, H. Chen, Y. Zheng, Y. Chen, M. Ma, X. Wang, L. Wang, D. Zeng, J. Shi, A facile in situ hydrophobic layer protected selective etching strategy for the synchronous synthesis/modification of hollow or rattle-type silica nanoconstructs, J. Mater. Chem. 22 (2012).
DOI: 10.1039/c2jm31504a
Google Scholar
[11]
X. Liu, Z. Jiao, T. Song, M. Wu, H. Zhang, Surfactant-assisted selective etching strategy for generation of rattle-like mesoporous silica nanoparticles, J. Colloid Interface Sci. 490 (2017) 497–504.
DOI: 10.1016/j.jcis.2016.11.083
Google Scholar
[12]
J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O'Hare, Z. Zhong, Recent advances in solid sorbents for CO2 capture and new development trends, Energy Environ. Sci. 7 (2014) 3478–3518.
DOI: 10.1039/c4ee01647e
Google Scholar
[13]
F. Shakerian, K.-H. Kim, J.E. Szulejko, J.-W. Park, A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture, Appl. Energy. 148 (2015) 10–22.
DOI: 10.1016/j.apenergy.2015.03.026
Google Scholar
[14]
B. Dutcher, M. Fan, A.G. Russell, Amine-Based CO2 Capture Technology Development from the Beginning of 2013—A Review, ACS Appl. Mater. Interfaces. 7 (2015) 2137–2148.
DOI: 10.1021/am507465f
Google Scholar
[15]
Q. Wang, J. Luo, Z. Zhong, A. Borgna, CO2 capture by solid adsorbents and their applications: current status and new trends, Energy Environ. Sci. 4 (2011) 42–55.
DOI: 10.1039/c0ee00064g
Google Scholar
[16]
S. Bai, J. Liu, J. Gao, Q. Yang, C. Li, Hydrolysis controlled synthesis of amine-functionalized hollow ethane–silica nanospheres as adsorbents for CO2 capture, Microporous Mesoporous Mater. 151 (2012) 474–480.
DOI: 10.1016/j.micromeso.2011.09.014
Google Scholar
[17]
J.A. Cecilia, E. Vilarrasa-García, C. García-Sancho, R.M.A. Saboya, D.C.S. Azevedo, C.L. Cavalcante, E. Rodríguez-Castellón, Functionalization of hollow silica microspheres by impregnation or grafted of amine groups for the CO2 capture, Int. J. Greenh. Gas Control. 52 (2016).
DOI: 10.1016/j.ijggc.2016.07.018
Google Scholar
[18]
X. Fang, C. Chen, Z. Liu, P. Liu, N. Zheng, A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres, Nanoscale. 3 (2011) 1632–1639.
DOI: 10.1039/c0nr00893a
Google Scholar
[19]
K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (1985) 603–619.
DOI: 10.1351/pac198557040603
Google Scholar
[20]
Z. Zhou, A.W. Franz, M. Hartmann, A. Seifert, T.J.J. Mu, W.R. Thiel, H. Heine, V. Uni, Novel Organic / Inorganic Hybrid Materials by Covalent Anchoring of Phenothiazines on MCM-41, Chem. Mater. 20 (2008) 4986–4992.
DOI: 10.1021/cm800804t
Google Scholar
[21]
B. Yan, Y. Li, B. Zhou, Covalently bonding assembly and photophysical properties of luminescent molecular hybrids Eu–TTA–Si and Eu–TTASi–MCM-41 by modified thenoyltrifluoroacetone, Microporous Mesoporous Mater. 120 (2009) 317–324.
DOI: 10.1016/j.micromeso.2008.11.021
Google Scholar
[22]
L. You, T. Wang, J. Ge, When Mesoporous Silica Meets the Alkaline Polyelectrolyte: A Controllable Synthesis of Functional and Hollow Nanostructures with a Porous Shell, Chem. - A Eur. J. 19 (2013) 2142–2149.
DOI: 10.1002/chem.201203308
Google Scholar
[23]
K. Hayashi, M. Nakamura, H. Miki, S. Ozaki, M. Abe, T. Matsumoto, K. Ishimura, Near-Infrared Fluorescent Silica/Porphyrin Hybrid Nanorings for In Vivo Cancer Imaging, Adv. Funct. Mater. 22 (2012) 3539–3546.
DOI: 10.1002/adfm.201200219
Google Scholar
[24]
E.-Y. Jeong, A. Burri, S.-Y. Lee, S.-E. Park, Synthesis and catalytic behavior of tetrakis(4-carboxyphenyl) porphyrin-periodic mesoporous organosilica, J. Mater. Chem. 20 (2010) 10869–10875.
DOI: 10.1039/c0jm02591g
Google Scholar
[25]
X. Huang, Y.-C. Zhao, B.-H. Han, Supramolecular organic network assembled from quadruple hydrogen-bonding motifs, Chem. Commun. 52 (2016) 6597–6600.
DOI: 10.1039/c6cc02206e
Google Scholar
[26]
H. Li, X. Ding, Y.-C. Zhao, B.-H. Han, Preparation of mannitol-based ketal-linked porous organic polymers and their application for selective capture of carbon dioxide, Polymer. 89 (2016) 112–118.
DOI: 10.1016/j.polymer.2016.02.024
Google Scholar
[27]
X. Ding, H. Li, Y.-C. Zhao, B.-H. Han, Mannitol-based acetal-linked porous organic polymers for selective capture of carbon dioxide over methane, Polym. Chem. 6 (2015) 5305–5312.
DOI: 10.1039/c5py00682a
Google Scholar
[28]
Z.-Y. Sui, Q.-H. Meng, J.-T. Li, J.-H. Zhu, Y. Cui, B.-H. Han, High surface area porous carbons produced by steam activation of graphene aerogels, J. Mater. Chem. A. 2 (2014) 9891–9898.
DOI: 10.1039/c4ta01387e
Google Scholar
[29]
Z.-Y. Sui, Y.-N. Meng, P.-W. Xiao, Z.-Q. Zhao, Z.-X. Wei, B.-H. Han, Nitrogen-Doped Graphene Aerogels as Efficient Supercapacitor Electrodes and Gas Adsorbents, ACS Appl. Mater. Interfaces. 7 (2015) 1431–1438.
DOI: 10.1021/am5042065
Google Scholar
[30]
Z.-Y. Sui, B.-H. Han, Effect of surface chemistry and textural properties on carbon dioxide uptake in hydrothermally reduced graphene oxide, Carbon 82 (2015) 590–598.
DOI: 10.1016/j.carbon.2014.11.014
Google Scholar
[31]
I. A. A. C. Esteves, M. S. S. Lopes, P. M. C. Nunes, J. P. B. Mota, Adsorption of Natural Gas and Biogas Components on Activated Carbon, Sep. Purif. Technol. 62 (2008) 281–296.
DOI: 10.1016/j.seppur.2008.01.027
Google Scholar
[32]
T. Wang, Y.-C. Zhao, M. Luo, L.-M. Zhang, Y. Cui, C.-S. Zhang, B.-H. Han, Facile One-Pot Synthesis of Glycoluril-Based Porous Organic Polymers, Polymer. 60 (2015) 26–31.
DOI: 10.1016/j.polymer.2014.12.072
Google Scholar