[1]
Y. Guo, J. Li, Y. Yuan, L. Li, M. Zhang, et al., A rapid microwave-assisted thermolysis route to highly crystalline carbon nitrides for efficient hydrogen generation, Angew. Chem. Int. Ed. 55 (2016) 14693.
DOI: 10.1002/anie.201608453
Google Scholar
[2]
K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, et al., Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media, J. Photoch. Photobio. C 9 (2008) 171.
DOI: 10.1016/j.jphotochemrev.2008.09.001
Google Scholar
[3]
S. Ye, R. Wang, M.Z. Wu, Y.P. Yuan, A review on g-C3N4 for photocatalytic water splitting and CO2 reduction, Appl. Surf. Sci. 358 (2015) 15.
Google Scholar
[4]
J. Chen, S. Shen, P. Guo, M. Wang, P. Wu, et al., In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production, Appl. Catal. B: Environ. 152-153 (2014) 335.
DOI: 10.1016/j.apcatb.2014.01.047
Google Scholar
[5]
Y.P. Yuan, L.S. Yin, S.W. Cao, L.N. Gu, G.S. Xu, et al., Microwave-assisted heating synthesis: a general and rapid strategy for large-scale production of highly crystalline g-C3N4 with enhanced photocatalytic H2 production, Green Chem. 16 (2014).
DOI: 10.1039/c4gc01517g
Google Scholar
[6]
A.Y. Liu, M. L. Cohen, Prediction of new low compressibility solids, Science 245 (1989) 841.
Google Scholar
[7]
L.B. Jiang, X.Z. Yuan, Y. Pan, J. Liang, G.M. Zeng, et al., Doping of graphitic carbon nitride for photocatalytic: a review, Appl. Catal. B: Environ. 217 (2017) 388.
Google Scholar
[8]
Y.J. Zhang, A. Thomas, M. Antonietti, X.C. Wang, Activation of carbon nitride solids by protonation: morphology changes, enhanced conic conductivity, and photoconduction pxperiments, J. Am. Chem. Soc. 131 (2009) 50.
DOI: 10.1021/ja808329f
Google Scholar
[9]
L. Li, P. Ye, C. Cao, Q. Jin, G.S. Xu, et al., Rapid microwave-assisted green production of a crystalline polyimide for enhanced visible-light-induced photocatalytic hydrogen production, J. Mater. Chem. A 3 (2015) 10205.
DOI: 10.1039/c5ta01078k
Google Scholar
[10]
Y.P. Yuan, S.W. Cao,Y. S. Liao, L.S. Yin, C. Xue, Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production, Appl. Catal. B: Environ. 141-142 (2013) 164.
DOI: 10.1016/j.apcatb.2013.04.006
Google Scholar
[11]
C. Ye, J.X. Li, Z.J. Li, X.B. Li, X.B. Fan, et al., Enhanced driving force and charge separation efficiency of protonated g-C3N4 for photocatalytic O2 evolution, ACS Catal. 5 (2015) 6973.
DOI: 10.1021/acscatal.5b02185
Google Scholar
[12]
J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, et al., Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis, Energ. Environ. Sci. 4 (2011) 675.
DOI: 10.1039/c0ee00418a
Google Scholar
[13]
W. Chen, T.Y. Liu, T. Huang, X.H. Liu, X.J. Yang, Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity, Nanoscale 8 (2016).
DOI: 10.1039/c5nr07695a
Google Scholar
[14]
C. Xu, Q. Han, Y. Zhao, L. Wang, Y. Li, et al., Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient metal-free electrocatalyst, J. Mater. Chem. A 3 (2015) 1841.
DOI: 10.1039/c4ta06149g
Google Scholar
[15]
Y.P. Yuan, L.W. Ruan, J. Barber, S.C.J. Loo, C. Xue, Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion, Energ. Environ. Sci. 7 (2014) 3934.
DOI: 10.1039/c4ee02914c
Google Scholar
[16]
G. Shi, L. Yang, Z. Liu, X. Chen, J. Zhou, et al., Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity, Appl. Surf. Sci. 427 (2018) 1165.
DOI: 10.1016/j.apsusc.2017.08.148
Google Scholar
[17]
S.Z. Hu, L. Ma, J.G You, F.Y. Li, Z.P. Fan, et al., A simple and efficient method to prepare phosphorus modified g-C3N4 visible light photocatalyst, RSC Adv. (2014) 21657.
DOI: 10.1039/c4ra02284j
Google Scholar
[18]
Y.P. Zhu, T.Z. Ren, Z.Y. Yuan, Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance, ACS Appl. Mater. Inter. 7 (2015) 16850.
DOI: 10.1021/acsami.5b04947
Google Scholar
[19]
J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, et al., Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles, Nat. Commun. 3 (2012) 1193.
DOI: 10.1038/ncomms2152
Google Scholar
[20]
J. Zhang, M. Zhang, C. Yang, X. Wang, Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface, Adv. Mater. 26 (2014) 4121.
DOI: 10.1002/adma.201400573
Google Scholar
[21]
E.Z. Lee, Y.S. Jun, W.H. Hong, A. Thomas, M.M. Jin, Cubic mesoporous graphitic carbon (IV) nitride: An all-in-one chemosensor for selective optical sensing of metal ions, Angew. Chem. Int. Ed. 49 (2010) 9706.
DOI: 10.1002/anie.201004975
Google Scholar
[22]
J. Liu, J. Huang, H. Zhou, M. Antonietti, Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis, ACS Appl. Mater. Inter. 6 (2014) 8434.
DOI: 10.1021/am501319v
Google Scholar
[23]
M. Tahir, C. Cao, N. Mahmood, F.K. Butt, A. Mahmood, et al., Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical and photocatalyst properties, ACS Appl. Mater. Inter. 6 (2014) 1258.
DOI: 10.1021/am405076b
Google Scholar
[24]
L. Luo, M. Zhang, P. Wang, Y.H. Wang, F. Wang, Nitrogen rich carbon nitride synthesized by copolymerization with enhanced visible light photocatalytic hydrogen evolution, New J. Chem. 42 (2018) 1087.
DOI: 10.1039/c7nj03659k
Google Scholar
[25]
Y. Cui, Z. Ding, X. Fu, X. Wang, Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis, Angew. Chem. Int. Ed. 51 (2012) 11814.
DOI: 10.1002/anie.201206534
Google Scholar
[26]
Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, et al., N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light, Carbon 99 (2016) 111.
DOI: 10.1016/j.carbon.2015.12.008
Google Scholar
[27]
C. Lu, R. Chen, X. Wu, M. Fan, Y. Liu, et al., Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance, Appl. Surf. Sci. 360 (2016) 1016.
DOI: 10.1016/j.apsusc.2015.11.112
Google Scholar
[28]
Y. Li, S. Wu, L. Huang, J. Wang, H. Xu, et al., Synthesis of carbon-doped g-C3N4 composites with enhanced visible-light photocatalytic activity, Mater. Lett. 137 (2014) 281.
DOI: 10.1016/j.matlet.2014.08.142
Google Scholar
[29]
Y. Zhang, M. Antonietti, Photocurrent generation by polymeric carbon nitride solids: An initial step towards a novel photovoltaic system, Chem-Asian J. 5 (2010) 1307.
DOI: 10.1002/asia.200900685
Google Scholar
[30]
X. Ma, Y. Lv, J. Xu, Y. Liu, R. Zhang, et al., A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study, J. Phys. Chem. C 116 (2012) 23485.
DOI: 10.1021/jp308334x
Google Scholar
[31]
Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, et al., Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and rhodamine B degradation under visible light, J. Mater. Chem. A 3 (2015) 3862.
DOI: 10.1039/c4ta05292g
Google Scholar
[32]
X.H. Li, J.S. Chen, X. Wang, J. Sun, M. Antonietti, Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons, J. Am. Chem. Soc. 133 (2011) 8074.
DOI: 10.1021/ja200997a
Google Scholar
[33]
H. Kim, S. Gim, T. H. Jeon, H. Kim, W. Choi, Distorted carbon nitride structure with substituted benzene moieties for enhanced visible light photocatalytic activities, ACS Appl. Mater. Inter. 9 (2017) 40360.
DOI: 10.1021/acsami.7b14191
Google Scholar
[34]
B. Jurgens, E. Irran, J. Senker, P. Kroll, H. Muller, et al., Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies, J. Am. Chem. Soc. 125 (2003).
DOI: 10.1021/ja0357689
Google Scholar
[35]
Y.C. Deng, L. Tang, C.Y. Feng, G.M. Zeng, J.J. Wang, et al., Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: full-spectrum response ability and mechanism insight, ACS Appl. Mater. Inter. 9 (2017).
DOI: 10.1021/acsami.7b14541.s001
Google Scholar
[36]
S. Guo, Z. Deng, M.Li, B. Jiang, C. Tian, et al., Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution, Angew. Chem. Int. Ed.55 (2016) 1830.
DOI: 10.1002/anie.201508505
Google Scholar
[37]
H. Gu, Y. Gu, Z. Li, Y. Ying, Y. Qian, Low-temperature route to nanoscale P3N5 hollow spheres, J. Mater. Res. 18 (2011) 2359.
DOI: 10.1557/jmr.2003.0330
Google Scholar
[38]
J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, J. Mater. Chem. 21 (2011) 14398.
DOI: 10.1039/c1jm12620b
Google Scholar
[39]
L. Ge, C. Han, Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity, Appl. Catal. B: Environ. 117 (2012) 268.
DOI: 10.1016/j.apcatb.2012.01.021
Google Scholar
[40]
G. Zhang, G. Li, Z.A. Lan, L. Lin, A. Savateev, et al., Optimizing optical absorption, exciton dissociation and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity, Angew. Chem. Int. Ed. 56 (2017).
DOI: 10.1002/anie.201706870
Google Scholar
[41]
R. Godin, Y. Wang, M.A. Zwijnenburg, J.W. Tang, J.R. Durrant, Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation, J. Am. Chem. Soc. 139 (2017) 5216.
DOI: 10.1021/jacs.7b01547
Google Scholar
[42]
G.H. Moon, M. Fujitsuka, S. Kim, T. Majima, X.C. Wang, et al., Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements, ACS Catal. 7 (2017) 2886.
DOI: 10.1021/acscatal.6b03334.s001
Google Scholar
[43]
X. Zhao, H. Yang, P. Jing, W. Shi, G. Yang, et al., A metal-organic framework approach toward highly nitrogen-doped graphitic carbon as a metal-free photocatalyst for hydrogen evolution, Small 13 (2017) 1603279.
DOI: 10.1002/smll.201603279
Google Scholar
[44]
Y. Wang, Y. Li, X. Bai, Q. Cai, C. Liu, et al., Facile synthesis of Y-doped graphitic carbon nitride with enhanced photocatalytic performance, Langmuir 84 (2016) 179.
DOI: 10.1016/j.catcom.2016.06.020
Google Scholar