Phosphorus Doped Carbon Nitride Nanotubes by Sequential Cation-Exchanging Reaction with Enhanced Photocatalytic Hydrogen Evolution

Article Preview

Abstract:

In this work, a novel and facile sequential cation-exchanging strategy was developed to synthesize phosphorus doped g-C3N4 nanotubes, and resulted nanotubes were composed of small nanorods with length of several hundred nanometers by oriented aggregation. As obtained products exhibit greatly enhanced photocatalytic hydrogen evolution with rate of 4.59 mmol h-1 g-1, which is 16 times higher than that of the bulk g-C3N4 under visible light irradiation. Mechanism investigation reveals that the superior photocatalytic property could be attributed to its improved visible light absorbance, well suppressed charges recombination and nanostructural construction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-85

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Guo, J. Li, Y. Yuan, L. Li, M. Zhang, et al., A rapid microwave-assisted thermolysis route to highly crystalline carbon nitrides for efficient hydrogen generation, Angew. Chem. Int. Ed. 55 (2016) 14693.

DOI: 10.1002/anie.201608453

Google Scholar

[2] K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, et al., Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media, J. Photoch. Photobio. C 9 (2008) 171.

DOI: 10.1016/j.jphotochemrev.2008.09.001

Google Scholar

[3] S. Ye, R. Wang, M.Z. Wu, Y.P. Yuan, A review on g-C3N4 for photocatalytic water splitting and CO2 reduction, Appl. Surf. Sci. 358 (2015) 15.

Google Scholar

[4] J. Chen, S. Shen, P. Guo, M. Wang, P. Wu, et al., In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production, Appl. Catal. B: Environ. 152-153 (2014) 335.

DOI: 10.1016/j.apcatb.2014.01.047

Google Scholar

[5] Y.P. Yuan, L.S. Yin, S.W. Cao, L.N. Gu, G.S. Xu, et al., Microwave-assisted heating synthesis: a general and rapid strategy for large-scale production of highly crystalline g-C3N4 with enhanced photocatalytic H2 production, Green Chem. 16 (2014).

DOI: 10.1039/c4gc01517g

Google Scholar

[6] A.Y. Liu, M. L. Cohen, Prediction of new low compressibility solids, Science 245 (1989) 841.

Google Scholar

[7] L.B. Jiang, X.Z. Yuan, Y. Pan, J. Liang, G.M. Zeng, et al., Doping of graphitic carbon nitride for photocatalytic: a review, Appl. Catal. B: Environ. 217 (2017) 388.

Google Scholar

[8] Y.J. Zhang, A. Thomas, M. Antonietti, X.C. Wang, Activation of carbon nitride solids by protonation: morphology changes, enhanced conic conductivity, and photoconduction pxperiments, J. Am. Chem. Soc. 131 (2009) 50.

DOI: 10.1021/ja808329f

Google Scholar

[9] L. Li, P. Ye, C. Cao, Q. Jin, G.S. Xu, et al., Rapid microwave-assisted green production of a crystalline polyimide for enhanced visible-light-induced photocatalytic hydrogen production, J. Mater. Chem. A 3 (2015) 10205.

DOI: 10.1039/c5ta01078k

Google Scholar

[10] Y.P. Yuan, S.W. Cao,Y. S. Liao, L.S. Yin, C. Xue, Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production, Appl. Catal. B: Environ. 141-142 (2013) 164.

DOI: 10.1016/j.apcatb.2013.04.006

Google Scholar

[11] C. Ye, J.X. Li, Z.J. Li, X.B. Li, X.B. Fan, et al., Enhanced driving force and charge separation efficiency of protonated g-C3N4 for photocatalytic O2 evolution, ACS Catal. 5 (2015) 6973.

DOI: 10.1021/acscatal.5b02185

Google Scholar

[12] J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, et al., Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis, Energ. Environ. Sci. 4 (2011) 675.

DOI: 10.1039/c0ee00418a

Google Scholar

[13] W. Chen, T.Y. Liu, T. Huang, X.H. Liu, X.J. Yang, Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity, Nanoscale 8 (2016).

DOI: 10.1039/c5nr07695a

Google Scholar

[14] C. Xu, Q. Han, Y. Zhao, L. Wang, Y. Li, et al., Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient metal-free electrocatalyst, J. Mater. Chem. A 3 (2015) 1841.

DOI: 10.1039/c4ta06149g

Google Scholar

[15] Y.P. Yuan, L.W. Ruan, J. Barber, S.C.J. Loo, C. Xue, Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion, Energ. Environ. Sci. 7 (2014) 3934.

DOI: 10.1039/c4ee02914c

Google Scholar

[16] G. Shi, L. Yang, Z. Liu, X. Chen, J. Zhou, et al., Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity, Appl. Surf. Sci. 427 (2018) 1165.

DOI: 10.1016/j.apsusc.2017.08.148

Google Scholar

[17] S.Z. Hu, L. Ma, J.G You, F.Y. Li, Z.P. Fan, et al., A simple and efficient method to prepare phosphorus modified g-C3N4 visible light photocatalyst, RSC Adv. (2014) 21657.

DOI: 10.1039/c4ra02284j

Google Scholar

[18] Y.P. Zhu, T.Z. Ren, Z.Y. Yuan, Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance, ACS Appl. Mater. Inter. 7 (2015) 16850.

DOI: 10.1021/acsami.5b04947

Google Scholar

[19] J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, et al., Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles, Nat. Commun. 3 (2012) 1193.

DOI: 10.1038/ncomms2152

Google Scholar

[20] J. Zhang, M. Zhang, C. Yang, X. Wang, Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface, Adv. Mater. 26 (2014) 4121.

DOI: 10.1002/adma.201400573

Google Scholar

[21] E.Z. Lee, Y.S. Jun, W.H. Hong, A. Thomas, M.M. Jin, Cubic mesoporous graphitic carbon (IV) nitride: An all-in-one chemosensor for selective optical sensing of metal ions, Angew. Chem. Int. Ed. 49 (2010) 9706.

DOI: 10.1002/anie.201004975

Google Scholar

[22] J. Liu, J. Huang, H. Zhou, M. Antonietti, Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis, ACS Appl. Mater. Inter. 6 (2014) 8434.

DOI: 10.1021/am501319v

Google Scholar

[23] M. Tahir, C. Cao, N. Mahmood, F.K. Butt, A. Mahmood, et al., Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical and photocatalyst properties, ACS Appl. Mater. Inter. 6 (2014) 1258.

DOI: 10.1021/am405076b

Google Scholar

[24] L. Luo, M. Zhang, P. Wang, Y.H. Wang, F. Wang, Nitrogen rich carbon nitride synthesized by copolymerization with enhanced visible light photocatalytic hydrogen evolution, New J. Chem. 42 (2018) 1087.

DOI: 10.1039/c7nj03659k

Google Scholar

[25] Y. Cui, Z. Ding, X. Fu, X. Wang, Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis, Angew. Chem. Int. Ed. 51 (2012) 11814.

DOI: 10.1002/anie.201206534

Google Scholar

[26] Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, et al., N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light, Carbon 99 (2016) 111.

DOI: 10.1016/j.carbon.2015.12.008

Google Scholar

[27] C. Lu, R. Chen, X. Wu, M. Fan, Y. Liu, et al., Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance, Appl. Surf. Sci. 360 (2016) 1016.

DOI: 10.1016/j.apsusc.2015.11.112

Google Scholar

[28] Y. Li, S. Wu, L. Huang, J. Wang, H. Xu, et al., Synthesis of carbon-doped g-C3N4 composites with enhanced visible-light photocatalytic activity, Mater. Lett. 137 (2014) 281.

DOI: 10.1016/j.matlet.2014.08.142

Google Scholar

[29] Y. Zhang, M. Antonietti, Photocurrent generation by polymeric carbon nitride solids: An initial step towards a novel photovoltaic system, Chem-Asian J. 5 (2010) 1307.

DOI: 10.1002/asia.200900685

Google Scholar

[30] X. Ma, Y. Lv, J. Xu, Y. Liu, R. Zhang, et al., A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study, J. Phys. Chem. C 116 (2012) 23485.

DOI: 10.1021/jp308334x

Google Scholar

[31] Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, et al., Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and rhodamine B degradation under visible light, J. Mater. Chem. A 3 (2015) 3862.

DOI: 10.1039/c4ta05292g

Google Scholar

[32] X.H. Li, J.S. Chen, X. Wang, J. Sun, M. Antonietti, Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons, J. Am. Chem. Soc. 133 (2011) 8074.

DOI: 10.1021/ja200997a

Google Scholar

[33] H. Kim, S. Gim, T. H. Jeon, H. Kim, W. Choi, Distorted carbon nitride structure with substituted benzene moieties for enhanced visible light photocatalytic activities, ACS Appl. Mater. Inter. 9 (2017) 40360.

DOI: 10.1021/acsami.7b14191

Google Scholar

[34] B. Jurgens, E. Irran, J. Senker, P. Kroll, H. Muller, et al., Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies, J. Am. Chem. Soc. 125 (2003).

DOI: 10.1021/ja0357689

Google Scholar

[35] Y.C. Deng, L. Tang, C.Y. Feng, G.M. Zeng, J.J. Wang, et al., Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: full-spectrum response ability and mechanism insight, ACS Appl. Mater. Inter. 9 (2017).

DOI: 10.1021/acsami.7b14541.s001

Google Scholar

[36] S. Guo, Z. Deng, M.Li, B. Jiang, C. Tian, et al., Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution, Angew. Chem. Int. Ed.55 (2016) 1830.

DOI: 10.1002/anie.201508505

Google Scholar

[37] H. Gu, Y. Gu, Z. Li, Y. Ying, Y. Qian, Low-temperature route to nanoscale P3N5 hollow spheres, J. Mater. Res. 18 (2011) 2359.

DOI: 10.1557/jmr.2003.0330

Google Scholar

[38] J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, J. Mater. Chem. 21 (2011) 14398.

DOI: 10.1039/c1jm12620b

Google Scholar

[39] L. Ge, C. Han, Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity, Appl. Catal. B: Environ. 117 (2012) 268.

DOI: 10.1016/j.apcatb.2012.01.021

Google Scholar

[40] G. Zhang, G. Li, Z.A. Lan, L. Lin, A. Savateev, et al., Optimizing optical absorption, exciton dissociation and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity, Angew. Chem. Int. Ed. 56 (2017).

DOI: 10.1002/anie.201706870

Google Scholar

[41] R. Godin, Y. Wang, M.A. Zwijnenburg, J.W. Tang, J.R. Durrant, Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation, J. Am. Chem. Soc. 139 (2017) 5216.

DOI: 10.1021/jacs.7b01547

Google Scholar

[42] G.H. Moon, M. Fujitsuka, S. Kim, T. Majima, X.C. Wang, et al., Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements, ACS Catal. 7 (2017) 2886.

DOI: 10.1021/acscatal.6b03334.s001

Google Scholar

[43] X. Zhao, H. Yang, P. Jing, W. Shi, G. Yang, et al., A metal-organic framework approach toward highly nitrogen-doped graphitic carbon as a metal-free photocatalyst for hydrogen evolution, Small 13 (2017) 1603279.

DOI: 10.1002/smll.201603279

Google Scholar

[44] Y. Wang, Y. Li, X. Bai, Q. Cai, C. Liu, et al., Facile synthesis of Y-doped graphitic carbon nitride with enhanced photocatalytic performance, Langmuir 84 (2016) 179.

DOI: 10.1016/j.catcom.2016.06.020

Google Scholar