A Review on Application of Novel Solid Nanostructures in Drug Delivery

Article Preview

Abstract:

Nanotechnology as a multidisciplinary and scientific innovation plays an important role in numerous biomedical applications, such as molecular imaging, biomarkers and biosensors and also drug delivery. A wide range of studies have been conducted on using of nanoparticles for early diagnosis and targeted drug therapy of various diseases. In fact, the small size, customized surface, upgraded solubility, or multi-functionality of nanoparticles enabled them to interact with complex cellular functions in new ways which opened many doors and created new biomedical applications. These studies demonstrated that nanotechnology vehicles can formulate biological products effectively, and this nano-formulated products with a potent ability against different diseases, were represented to have better biocompatibility, bioaccessibility and efficacy, under in vitro and in vivo conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-36

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Formoso, R. Muzzalupo, L. Tavano, G. De Filpo, F.P. Nicoletta, Nanotechnology for the Environment and Medicine, Mini Rev Med Chem. 16(2016) 668-675.

DOI: 10.2174/1389557515666150709105129

Google Scholar

[2] M. Barry, H. Pearce, L. Cross, M. Tatullo, A.K. Gaharwar, Advances in Nanotechnology for the Treatment of Osteoporosis, Curr Osteoporos Rep. 14(2016) 87-94.

DOI: 10.1007/s11914-016-0306-3

Google Scholar

[3] R. Singh, J.W. Lillard, Jr., Nanoparticle-based targeted drug delivery, Exp Mol Pathol. 86(2009) 215-223.

Google Scholar

[4] M.D. Diener, Fullerenes for Photovoltaic and Bioscience Applications, Wheat Ridge: TDA Research.

Google Scholar

[5] H. He, J. Ye, J. Sheng, J. Wang, Y. Huang, G. Chen, J. Wang, V.C. Yang, Overcoming oral insulin delivery barriers: application of cell penetrating peptide and silica-based nanoporous composites, Frontiers of Chemical Science and Engineering. 7(2013).

DOI: 10.1007/s11705-013-1306-9

Google Scholar

[6] M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes in drug design and discovery, Acc Chem Res. 41(2008) 60-68.

DOI: 10.1021/ar700089b

Google Scholar

[7] M. Johari-Ahar, J. Barar, A.M. Alizadeh, S. Davaran, Y. Omidi, M.R. Rashidi, Methotrexateconjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells, J Drug Target. 24(2016) 120-133.

DOI: 10.3109/1061186x.2015.1058801

Google Scholar

[8] A. Dehshahri, R.K. Oskuee, M. Ramezani, Plasmid DNA delivery into hepatocytes using a multifunctional nanocarrier based on sugarconjugated polyethylenimine, Gene Therapy and Molecular Biology. 14(2012) 62-71.

Google Scholar

[9] A. Dehshahri, R.K. Oskuee, W.T. Shier, M. Ramezani, β-Galactosylated alkyl-oligoamine derivatives of polyethylenimine enhanced pDNA delivery into hepatic cells with reduced toxicity, Current Nanoscience. 8(2012) 548-555.

DOI: 10.2174/157341312801784339

Google Scholar

[10] A. Surendiran, S. Sandhiya, S.C. Pradhan, C. Adithan, Novel applications of nanotechnology in medicine, The Indian journal of medical research. 130(2009) 689-701.

Google Scholar

[11] T.Y. Zakharian ,A. Seryshev, B. Sitharaman, B.E. Gilbert, V. Knight, L.J. Wilson, A fullerene paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture, J Am Chem Soc. 127(2005)12508-12509.

DOI: 10.1021/ja0546525

Google Scholar

[12] R. Partha, L.R. Mitchell, J.L. Lyon, P.P. Joshi, J.L. Conyers, Buckysomes: fullerene-based nanocarriers for hydrophobic molecule delivery, Acs Nano. 2(2008) 1950-(1958).

DOI: 10.1021/nn800422k

Google Scholar

[13] M. Ganji, H. Yazdani, A. Mirnejad, B 36 N 36 fullerene-like nanocages: a novel material for drug delivery, Physica E: Low-dimensional Systems and Nanostructures. 42(2010) 2184-2189.

DOI: 10.1016/j.physe.2010.04.018

Google Scholar

[14] K. Raza, N. Thotakura, P. Kumar, M. Joshi, S. Bhushan, A. Bhatia, V. Kumar, R. Malik, G. Sharma, S.K. Guru, C 60-fullerenes for delivery of docetaxel to breast cancer cells: A promising approach for enhanced efficacy and better pharmacokinetic profile, International journal of pharmaceutics. 495(2015).

DOI: 10.1016/j.ijpharm.2015.09.016

Google Scholar

[15] J. Shi, H. Zhang, L. Wang, L. Li, H. Wang, Z. Wang, Z. Li, C. Chen, L. Hou, C. Zhang, PEI derivatized fullerene drug delivery using folate as a homing device targeting to tumor, Biomaterials. 34(2013) 251-261.

DOI: 10.1016/j.biomaterials.2012.09.039

Google Scholar

[16] G.E. Magoulas, M. Bantzi, D. Messari, E. Voulgari, C. Gialeli, D. Barbouri, A. Giannis, N.K. Karamanos, D. Papaioannou, K. Avgoustakis, Synthesis and Εvaluation of Αnticancer Αctivity in Cells of Novel Stoichiometric Pegylated Fullerene-Doxorubicin Conjugates, Pharmaceutical research. 32(2015).

DOI: 10.1007/s11095-014-1566-1

Google Scholar

[17] L. Tan, T. Wu, Z.W. Tang, J.Y. Xiao, R.X. Zhuo, B. Shi, C.J. Liu, Water-soluble photoluminescent fullerene capped mesoporous silica for pH-responsive drug delivery and bioimaging, Nanotechnology. 27 (2016) p.315104.

DOI: 10.1088/0957-4484/27/31/315104

Google Scholar

[18] J.M. Ashcroft, D.A. Tsyboulski, S. Bachilo, R.B. Weisman, J.W. Marks, M.G. Rosenblum, L.J. Wilson, Fullerene (C60)-immunoconjugates: Interaction of customized water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody, Cancer Research. 66(2006).

DOI: 10.1149/ma2006-01/20/739

Google Scholar

[19] N. Amirshahi, R. Alyautdin, S. Sarkar, S. Rezayat, M. Orlova, I. Trushkov, A. Buchachenko, D. Kuznetsov, Porphyrin-fullerene nanoparticles for treatment of hypoxic cardiopathies, Nanotechnologies in Russia. 3(2008) 611-621.

DOI: 10.1134/s1995078008090115

Google Scholar

[20] R. Kurz, A. Sickinger, A. Robitzki, Electroactive Nanoporous Valve for Controlled Drug Delivery, in: World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany, Springer. (2009) 95-97.

DOI: 10.1007/978-3-642-03887-7_26

Google Scholar

[21] S.M. Haidary, E.P. Corcoles, N.K. Ali, Nanoporous silicon as drug delivery systems for cancer therapies, Journal of Nanomaterials. 2012, p.18.

Google Scholar

[22] H.R. Sadeghnia, N. Zoljalali, M.Y. Hanafi-Bojd, S. Nikoofal-Sahlabadi, B. Malaekeh-Nikouei, Effect of mesoporous silica nanoparticles on cell viability and markers of oxidative stress, Toxicology mechanisms and methods. 25(2015) 433-439.

Google Scholar

[23] M.Y .Hanafi-Bojd, M.R. Jaafari, N. Ramezanian, M. Xue, M. Amin, N. Shahtahmassebi, B. Malaekeh-Nikouei, Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells, European Journal of Pharmaceutics and Biopharmaceutics. 89(2015).

DOI: 10.1016/j.ejpb.2014.12.009

Google Scholar

[24] M. YahyaHanafi-Bojd, M. Jaafari, N. Ramezanian, K. Abnous, B. Malaekeh-Nikouei, Co-delivery of Epirubicin and siRNA Using Functionalized Mesoporous Silica Nanoparticles Enhances In vitro and In vivo Drug Efficacy, Current drug delivery. 13(2016).

DOI: 10.2174/1567201813666151231094056

Google Scholar

[25] I.J.Z. Abadi, O. Sadeghi, H.R.L. Zhad, N. Tavassoli, V. Amani, M.M. Amini, Novel modified nanoporous silica for oral drug delivery: loading and release of clarithromycin, Journal of sol-gel science and technology. 61(2012) 95-90.

DOI: 10.1007/s10971-011-2595-4

Google Scholar

[26] E. Gultepe, D. Nagesha, S. Sridhar, M. Amiji, Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices, Adv Drug Deliv Rev. 62(2010) 305-315.

DOI: 10.1016/j.addr.2009.11.003

Google Scholar

[27] M. Signoretto, E. Ghedini, V. Nichele, F. Pinna, V .Crocella, G. Cerrato, Effect of textural properties on the drug delivery behaviour of nanoporous TiO 2 matrices, Microporous and mesoporous Materials. 139(2011) 189-196.

DOI: 10.1016/j.micromeso.2010.10.042

Google Scholar

[28] S. San Roman, J. Gullon, M. del Arco, C. Martin, Influence of the Surface Acidity of the Alumina on the Sustained Release of Ketoprofen, Journal of Pharmaceutical Sciences. (2016).

DOI: 10.1016/j.xphs.2016.04.029

Google Scholar

[29] G.R. Bardajee, A. Pourjavadi, R. Soleyman, Novel nano-porous hydrogel as a carrier matrix for oral delivery of tetracycline hydrochloride, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 392(2011) 16-24.

DOI: 10.1016/j.colsurfa.2011.09.014

Google Scholar

[30] D. Simon, S. Manuel, H. Varma, Novel nanoporous bioceramic spheres for drug delivery application:a preliminary in vitro investigation, Oral Surg Oral Med Oral Pathol Oral Radiol. 115(2013) e7-14.

DOI: 10.1016/j.oooo.2011.10.021

Google Scholar

[31] S.Y. Madani, F. Shabani, M.V. Dwek, A.M. Seifalian, Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment, Int J Nanomedicine. 8(2013) 941-950.

DOI: 10.2147/ijn.s36416

Google Scholar

[32] P. Jeyamohan, T. Hasumura, Y. Nagaoka, Y. Yoshida, T. Maekawa, D.S. Kumar, Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy, Int J Nanomedicine. 8(2013).

DOI: 10.2147/ijn.s46054

Google Scholar

[33] Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery, Acs Nano. 1(2007) 50-56.

DOI: 10.1021/nn700040t

Google Scholar

[34] J. Chen, S. Chen, X. Zhao, L.V. Kuznetsova, S.S. Wong, I. Ojima, Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery, Journal of the American Chemical Society. 130(2008) 16778-16785.

DOI: 10.1021/ja805570f

Google Scholar

[35] L. Zheng, S. Wu, L. Tan, H. Tan, B. Yu, Chitosan-functionalised single-walled carbon nanotubemediated drug delivery of SNX-2112 in cancer cells, Journal of biomaterials applications. 31(2016) 379-386.

DOI: 10.1177/0885328216651183

Google Scholar

[36] W. Shao, A. Paul, L. Rodes, S. Prakash, A New Carbon Nanotube-Based Breast Cancer Drug Delivery System: Preparation and In Vitro Analysis Using Paclitaxel, Cell biochemistry and biophysics. 71(2015) 1405-1414.

DOI: 10.1007/s12013-014-0363-0

Google Scholar

[37] W. Shao, A. Paul, B. Zhao, C. Lee, L. Rodes, S. Prakash, Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model, Biomaterials. 34(2013) 10109-10119.

DOI: 10.1016/j.biomaterials.2013.09.007

Google Scholar

[38] Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, H. Dai, Drug delivery with carbon nanotubes for in vivo cancer treatment, Cancer Res. 68(2008) 6652-6660.

DOI: 10.1158/0008-5472.can-08-1468

Google Scholar

[39] E. Heister, V. Neves, C. Tîlmaciu, K. Lipert, V.S. Beltrán, H.M. Coley, S.R.P. Silva, J. McFadden, Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy, Carbon. 47(2009).

DOI: 10.1016/j.carbon.2009.03.057

Google Scholar

[40] A.A. Bhirde, V. Patel, J. Gavard, G. Zhang, A.A. Sousa, A. Masedunskas, R.D. Leapman, R. Weigert, J.S. Gutkind, J.F. Rusling, Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery, Acs Nano. 3(2009).

DOI: 10.1021/nn800551s

Google Scholar

[41] S. Dhar, Z. Liu, J. Thomale, H. Dai, S.J. Lippard, Targeted single-wall carbon nanotube-mediated Pt (IV) prodrug delivery using folate as a homing device, Journal of the American Chemical Society. 130(2008) 11467-11476.

DOI: 10.1021/ja803036e

Google Scholar

[42] A. Kazemi-Beydokhti, S.Z. Heris, M.R. Jaafari, S. Nikoofal-Sahlabadi, M. Tafaghodi, M. Hatamipoor, Microwave functionalized single-walled carbon nanotube as nanocarrier for the delivery of anticancer drug cisplatin: in vitro and in vivo evaluation, Journal of Drug Delivery Science and Technology. 24(2014).

DOI: 10.1016/s1773-2247(14)50121-9

Google Scholar

[43] X. Zhang, L. Meng, Q. Lu, Z. Fei, P.J. Dyson, Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes, Biomaterials. 30(2009) 6041-6047.

DOI: 10.1016/j.biomaterials.2009.07.025

Google Scholar

[44] M.R. McDevitt, D. Chattopadhyay, B.J. Kappel, J.S. Jaggi, S.R. Schiffman, C. Antczak, J.T. Njardarson, R. Brentjens, D.A. Scheinberg, Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes, Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 48(2007).

DOI: 10.2967/jnumed.106.039131

Google Scholar

[45] M. Ma, M. Kazemzadeh‐Narbat, Y. Hui, S. Lu, C. Ding, D.D. Chen, R.E. Hancock, R. Wang, Local delivery of antimicrobial peptides using self‐organized TiO2 nanotube arrays for peri‐implant infections, Journal of Biomedical Materials Research Part A. 100(2012).

DOI: 10.1002/jbm.a.33251

Google Scholar

[46] X. Zhang, R. Guo, J. Xu, Y. Lan, Y. Jiao, C. Zhou, Y. Zhao, Poly (l-lactide)/halloysite nanotube electrospun mats as dual-drug delivery systems and their therapeutic efficacy in infected full-thickness burns, Journal of biomaterials applications. 30(2015).

DOI: 10.1177/0885328215593837

Google Scholar

[47] A.M. Iga, J.H. Robertson, M.C. Winslet, A.M. Seifalian, Clinical potential of quantum dots, J Biomed Biotechnol. 2007, 10, 76087.

Google Scholar

[48] I. Martynenko, V. Kuznetsova, А.O. Orlova, P. Kanaev, V. Maslov, A. Loudon, V. Zaharov, P. Parfenov, Y.K. Gun'ko, A. Baranov, Chlorin e6–ZnSe/ZnS quantum dots based system as reagent for photodynamic therapy, Nanotechnology. 26(2015) 512-525.

DOI: 10.1088/0957-4484/26/5/055102

Google Scholar

[49] Z. Liu, Q. Lin, Q. Huang, H. Liu ,C. Bao, W. Zhang, X. Zhong, L. Zhu, Semiconductor quantum dots photosensitizing release of anticancer drug, Chem Commun (Camb). 47(2011) 1482-1484.

DOI: 10.1039/c0cc04676k

Google Scholar

[50] X. Gao, Y. Cui, R.M. Levenson, L.W. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat Biotechnol. 22(2004) 969-976.

DOI: 10.1038/nbt994

Google Scholar

[51] S. Hanada, K. Fujioka, Y. Futamura, N. Manabe, A. Hoshino, K. Yamamoto, Evaluation of anti-inflammatory drug-conjugated silicon quantum dots: Their cytotoxicity and biological effect, International journal of molecular sciences. 14(2013).

DOI: 10.3390/ijms14011323

Google Scholar

[52] L.M. Armijo, B.A. Akins, J.B. Plumley, A.C. Rivera, N.J. Withers, N.C. Cook, G.A. Smolyakov, D.L Huber, H.D. Smyth, M. Osinski, Highly efficient multifunctional MnSe/ZnSeS quantum dots for biomedical applications, in: SPIE BiOS, International Society for Optics and Photonics. 8595(2013).

DOI: 10.1117/12.2009563

Google Scholar

[53] W. Maneeprakorn, M.A. Malik, P. O Brien, Developing chemical strategies for the assembly of nanoparticles into mesoscopic objects, Journal of the American Chemical Society. 132(2010) 1780-1781.

DOI: 10.1021/ja910022q

Google Scholar

[54] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles, Journal of Materials Chemistry. 17(2007) 2679-2694.

DOI: 10.1039/b700857k

Google Scholar

[55] C. Baslak, M.D. Kars, M. Karaman, M. Kus, Y. Cengeloglu, M. Ersoz, Biocompatible multi-walled carbon nanotube–CdTe quantum dot–polymer hybrids for medical applications, Journal of Luminescence. 160(2015) 9-15.

DOI: 10.1016/j.jlumin.2014.11.030

Google Scholar

[56] M. Dutta, S. Jana, D .Basak, Quenching of photoluminescence in ZnO QDs decorating multiwalled carbon nanotubes, ChemPhysChem. 11(2010) 1774-1779.

DOI: 10.1002/cphc.200900960

Google Scholar

[57] M. Olek, T. Busgen, M. Hilgendorff, M. Giersig, Quantum dot modified multiwall carbon nanotubes, The journal of physical chemistry B. 110 (2006) 12901-12904.

DOI: 10.1021/jp061453e

Google Scholar

[58] B.J. Landi, C.M. Evans, J.J. Worman, S.L. Castro, S.G. Bailey, R.P. Raffaelle, Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes, Materials Letters. 60(2006) 3502-3506.

DOI: 10.1016/j.matlet.2006.03.057

Google Scholar

[59] Y. Ghasemi, P .Peymani, S. Afifi, Quantum dot: magic nanoparticle for imaging, detection and targeting, Acta Biomed. 80(2009) 156-165.

Google Scholar

[60] M.L. Chen, Y.J. He, X.W. Chen, J.H. Wang, Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery, Langmuir. 28(2012) 16469-16476.

DOI: 10.1021/la303957y

Google Scholar

[61] B. Pan, D. Cui, R. He, F. Gao, Y. Zhang, Covalent attachment of quantum dot on carbon nanotubes, Chemical physics letters. 417(2006) 419-424.

DOI: 10.1016/j.cplett.2005.10.044

Google Scholar

[62] G. Brakmane, S.Y. Madani ,A. Seifalian, Cancer Antibody Enhanced Real Time Imaging Cell Probes–a Novel Theranostic Tool using Polymer Linked Carbon Nanotubes and Quantum Dots, Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 13(2013).

DOI: 10.2174/1871520611313050016

Google Scholar

[63] L. Nayef, J.S. Rendon, R. Matthys, R.C. Hamdy, M. Tabrizian, Liposome Encapsulated Quantum Dots Show Efficient In Vivo Retention of a Nanoparticulate Drug Delivery System at Its Target in a Rat Model of Distraction Osteogenesis, Journal of Nanopharmaceutics and Drug Delivery. 2(2014).

DOI: 10.1166/jnd.2014.1047

Google Scholar

[64] P. Nigam, S. Waghmode, M. Louis, S. Wangnoo, P. Chavan, D. Sarkar, Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer, Journal of Materials Chemistry B. 2(2014) 3190-3195.

DOI: 10.1039/c4tb00015c

Google Scholar

[65] A. Chandra, S. Deshpande, D.B. Shinde, V.K. Pillai, N. Singh, Mitigating the cytotoxicity of graphene quantum dots and enhancing their applications in bioimaging and drug delivery, ACS Macro Letters. 3(2014) 1064-1068.

DOI: 10.1021/mz500479k

Google Scholar

[66] Z. Wang, J. Xia, C. Zhou, B. Via, Y. Xia, F. Zhang, Y. Li, L. Xia, J. Tang, Synthesis of strongly green-photoluminescent graphene quantum dots for drug carrier, Colloids and surfaces. B, Biointerfaces. 112(2013) 192-196.

DOI: 10.1016/j.colsurfb.2013.07.025

Google Scholar

[67] X. Wang, X. Sun, J. Lao, H. He, T. Cheng, M. Wang, S. Wang, F. Huang, Multifunctional grapheme quantum dots for simultaneous targeted cellular imaging and drug delivery, Colloids and surfaces. B, Biointerfaces. 122(2014) 638-644.

DOI: 10.1016/j.colsurfb.2014.07.043

Google Scholar

[68] C.L. Huang, C.C. Huang ,F.D. Mai, C.L. Yen, S.H. Tzing, H.T. Hsieh, Y.C. Ling, J.Y. Chang, Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery, Journal of Materials Chemistry B. 3(2015).

DOI: 10.1039/c4tb01650e

Google Scholar

[69] V.V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, H. Parihar, Magnetic nanoparticle drug delivery systems for targeting tumor, Applied Nanoscience. 4(2014) 385-392.

DOI: 10.1007/s13204-013-0216-y

Google Scholar

[70] F.H. Chen, L.M. Zhang, Q.T. Chen, Y. Zhang, Z.J. Zhang, Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG functionalized porous silica shell, Chemical Communications. 46(2010).

DOI: 10.1039/c0cc02577a

Google Scholar

[71] J. Gautier, E. Munnier, A. Paillard, K. Herve, L. Douziech-Eyrolles, M. Souce, P. Dubois, I. Chourpa, A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting, Int J Pharm. 423(2012) 16-25.

DOI: 10.1016/j.ijpharm.2011.06.010

Google Scholar

[72] R. Tietze, S. Lyer, S. Durr, T. Struffert, T. Engelhorn, M. Schwarz, E .Eckert, T. Goen, S. Vasylyev, W. Peukert, Efficient drug-delivery using magnetic nanoparticles—Biodistribution and therapeutic effects in tumour bearing rabbits, Nanomedicine: Nanotechnology, Biology and Medicine. 9(2013).

DOI: 10.1016/j.nano.2013.05.001

Google Scholar

[73] H.L. Liu, M.Y. Hua, H.W. Yang, C.Y. Huang, P.C. Chu, J.S. Wu, I.C. Tseng, J.J. Wang, T.C. Yen, P.Y. Chen, K.C. Wei, Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain, Proceedings of the National Academy of Sciences of the United States of America. 107(2010).

DOI: 10.1073/pnas.1003388107

Google Scholar

[74] L. Philosof-Mazor, G.R. Dakwar, M. Popov, S. Kolusheva, A. Shames, C. Linder, S. Greenberg, E. Heldman, D. Stepensky, R. Jelinek, Bolaamphiphilic vesicles encapsulating iron oxide nanoparticles: new vehicles for magnetically targeted drug delivery, Int J Pharm. 450(2013).

DOI: 10.1016/j.ijpharm.2013.04.017

Google Scholar

[75] B. Chertok, A.E. David, V.C. Yang, Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration, Biomaterials. 31(2010) 6317-6324.

DOI: 10.1016/j.biomaterials.2010.04.043

Google Scholar

[76] M. Filippousi, S.A. Papadimitriou, D.N. Bikiaris, E. Pavlidou, M. Angelakeris, D. Zamboulis, H. Tian, G. Van Tendeloo, Novel core-shell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers: preparation, characterization and release properties, Int J Pharm. 448(2013).

DOI: 10.1016/j.ijpharm.2013.03.025

Google Scholar

[77] H. Deng, Z. Lei, Preparation and characterization of hollow Fe 3 O 4/SiO 2@ PEG–PLA nanoparticles for drug delivery, Composites Part B: Engineering. 54(2013) 194-199.

DOI: 10.1016/j.compositesb.2013.05.010

Google Scholar

[78] E. Ebrahimi, A. Akbarzadeh, E. Abbasi, A.A. Khandaghi, F. Abasalizadeh, S. Davaran, Novel drug delivery system based on doxorubicin-encapsulated magnetic nanoparticles modified with PLGAPEG1000 copolymer, Artif Cells Nanomed Biotechnol. 44(2016).

DOI: 10.3109/21691401.2014.944646

Google Scholar

[79] X. Li, M. Peng, P.A. Raju, Q. Zhang, Y. Hu, Y. Jin, Y. Cui, Dextran-Coated GoldMag Nanoparticles Enhance the Colloidal Stability and Controlled-Release of Doxorubicin, IEEE Transactions on Magnetics. 49(2013) 359-363.

DOI: 10.1109/tmag.2012.2224323

Google Scholar

[80] J. Huang, Q. Shu, L. Wang, H. Wu, A.Y. Wang, H. Mao, Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzymeresponsive release in small intestine, Biomaterials. 39(2015).

DOI: 10.1016/j.biomaterials.2014.10.059

Google Scholar

[81] F. Ye, A. Barrefelt, H. Asem, M. Abedi-Valugerdi, I. El-Serafi, M. Saghafian, K. Abu-Salah, S. Alrokayan, M. Muhammed, M. Hassan, Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging, Biomaterials. 35(2014).

DOI: 10.1016/j.biomaterials.2014.01.041

Google Scholar

[82] Y. Qi, G. Feng, Z. Huang, W. Yan, The application of super paramagnetic iron oxide-labeled mesenchymal stem cells in cell-based therapy, Mol Biol Rep. 40(2013) 2733-2740.

DOI: 10.1007/s11033-012-2364-7

Google Scholar

[83] A. Villaverde, E. Garcia-Fruitos, U. Rinas, J. Seras-Franzoso, A. Kosoy, J.L. Corchero, E. Vazquez, Packaging protein drugs as bacterial inclusion bodies for therapeutic applications, Microbial cell factories. 11(2012) p.76.

DOI: 10.1186/1475-2859-11-76

Google Scholar

[84] R.A .Luis, R.B. Artal, Inclusion bodies for transdermal delivery of therapeutic and cosmetic agents, Google Patents, (2014).

Google Scholar

[85] M. Liovic, M. Ozir, A.B. Zavec, S. Peternel, R. Komel, T. Zupancic, Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells, Microbial cell factories. 11(2012) p.67.

DOI: 10.1186/1475-2859-11-67

Google Scholar

[86] K. Talafova, E. Hrabarova, D. Chorvat, J. Nahalka, Bacterial inclusion bodies as potential synthetic devices for pathogen recognition and a therapeutic substance release, Microbial cell factories. 12 (2013) p.16.

DOI: 10.1186/1475-2859-12-16

Google Scholar

[87] J. Seras-Franzoso, K. Peebo, E. García-Fruitos, E. Vazquez, U. Rinas, A. Villaverde, Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates, Acta Biomaterialia. 10(2014) 1354-1359.

DOI: 10.1016/j.actbio.2013.12.021

Google Scholar