p.1
p.7
p.13
p.22
p.37
p.54
p.64
p.76
A Review on Application of Novel Solid Nanostructures in Drug Delivery
Abstract:
Nanotechnology as a multidisciplinary and scientific innovation plays an important role in numerous biomedical applications, such as molecular imaging, biomarkers and biosensors and also drug delivery. A wide range of studies have been conducted on using of nanoparticles for early diagnosis and targeted drug therapy of various diseases. In fact, the small size, customized surface, upgraded solubility, or multi-functionality of nanoparticles enabled them to interact with complex cellular functions in new ways which opened many doors and created new biomedical applications. These studies demonstrated that nanotechnology vehicles can formulate biological products effectively, and this nano-formulated products with a potent ability against different diseases, were represented to have better biocompatibility, bioaccessibility and efficacy, under in vitro and in vivo conditions.
Info:
Periodical:
Pages:
22-36
Citation:
Online since:
June 2018
Keywords:
Price:
Сopyright:
© 2018 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] P. Formoso, R. Muzzalupo, L. Tavano, G. De Filpo, F.P. Nicoletta, Nanotechnology for the Environment and Medicine, Mini Rev Med Chem. 16(2016) 668-675.
[2] M. Barry, H. Pearce, L. Cross, M. Tatullo, A.K. Gaharwar, Advances in Nanotechnology for the Treatment of Osteoporosis, Curr Osteoporos Rep. 14(2016) 87-94.
[3] R. Singh, J.W. Lillard, Jr., Nanoparticle-based targeted drug delivery, Exp Mol Pathol. 86(2009) 215-223.
[4] M.D. Diener, Fullerenes for Photovoltaic and Bioscience Applications, Wheat Ridge: TDA Research.
[5] H. He, J. Ye, J. Sheng, J. Wang, Y. Huang, G. Chen, J. Wang, V.C. Yang, Overcoming oral insulin delivery barriers: application of cell penetrating peptide and silica-based nanoporous composites, Frontiers of Chemical Science and Engineering. 7(2013).
[6] M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes in drug design and discovery, Acc Chem Res. 41(2008) 60-68.
DOI: 10.1021/ar700089b
[7] M. Johari-Ahar, J. Barar, A.M. Alizadeh, S. Davaran, Y. Omidi, M.R. Rashidi, Methotrexateconjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells, J Drug Target. 24(2016) 120-133.
[8] A. Dehshahri, R.K. Oskuee, M. Ramezani, Plasmid DNA delivery into hepatocytes using a multifunctional nanocarrier based on sugarconjugated polyethylenimine, Gene Therapy and Molecular Biology. 14(2012) 62-71.
[9] A. Dehshahri, R.K. Oskuee, W.T. Shier, M. Ramezani, β-Galactosylated alkyl-oligoamine derivatives of polyethylenimine enhanced pDNA delivery into hepatic cells with reduced toxicity, Current Nanoscience. 8(2012) 548-555.
[10] A. Surendiran, S. Sandhiya, S.C. Pradhan, C. Adithan, Novel applications of nanotechnology in medicine, The Indian journal of medical research. 130(2009) 689-701.
[11] T.Y. Zakharian ,A. Seryshev, B. Sitharaman, B.E. Gilbert, V. Knight, L.J. Wilson, A fullerene paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture, J Am Chem Soc. 127(2005)12508-12509.
DOI: 10.1021/ja0546525
[12] R. Partha, L.R. Mitchell, J.L. Lyon, P.P. Joshi, J.L. Conyers, Buckysomes: fullerene-based nanocarriers for hydrophobic molecule delivery, Acs Nano. 2(2008) 1950-(1958).
DOI: 10.1021/nn800422k
[13] M. Ganji, H. Yazdani, A. Mirnejad, B 36 N 36 fullerene-like nanocages: a novel material for drug delivery, Physica E: Low-dimensional Systems and Nanostructures. 42(2010) 2184-2189.
[14] K. Raza, N. Thotakura, P. Kumar, M. Joshi, S. Bhushan, A. Bhatia, V. Kumar, R. Malik, G. Sharma, S.K. Guru, C 60-fullerenes for delivery of docetaxel to breast cancer cells: A promising approach for enhanced efficacy and better pharmacokinetic profile, International journal of pharmaceutics. 495(2015).
[15] J. Shi, H. Zhang, L. Wang, L. Li, H. Wang, Z. Wang, Z. Li, C. Chen, L. Hou, C. Zhang, PEI derivatized fullerene drug delivery using folate as a homing device targeting to tumor, Biomaterials. 34(2013) 251-261.
[16] G.E. Magoulas, M. Bantzi, D. Messari, E. Voulgari, C. Gialeli, D. Barbouri, A. Giannis, N.K. Karamanos, D. Papaioannou, K. Avgoustakis, Synthesis and Εvaluation of Αnticancer Αctivity in Cells of Novel Stoichiometric Pegylated Fullerene-Doxorubicin Conjugates, Pharmaceutical research. 32(2015).
[17] L. Tan, T. Wu, Z.W. Tang, J.Y. Xiao, R.X. Zhuo, B. Shi, C.J. Liu, Water-soluble photoluminescent fullerene capped mesoporous silica for pH-responsive drug delivery and bioimaging, Nanotechnology. 27 (2016) p.315104.
[18] J.M. Ashcroft, D.A. Tsyboulski, S. Bachilo, R.B. Weisman, J.W. Marks, M.G. Rosenblum, L.J. Wilson, Fullerene (C60)-immunoconjugates: Interaction of customized water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody, Cancer Research. 66(2006).
[19] N. Amirshahi, R. Alyautdin, S. Sarkar, S. Rezayat, M. Orlova, I. Trushkov, A. Buchachenko, D. Kuznetsov, Porphyrin-fullerene nanoparticles for treatment of hypoxic cardiopathies, Nanotechnologies in Russia. 3(2008) 611-621.
[20] R. Kurz, A. Sickinger, A. Robitzki, Electroactive Nanoporous Valve for Controlled Drug Delivery, in: World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany, Springer. (2009) 95-97.
[21] S.M. Haidary, E.P. Corcoles, N.K. Ali, Nanoporous silicon as drug delivery systems for cancer therapies, Journal of Nanomaterials. 2012, p.18.
[22] H.R. Sadeghnia, N. Zoljalali, M.Y. Hanafi-Bojd, S. Nikoofal-Sahlabadi, B. Malaekeh-Nikouei, Effect of mesoporous silica nanoparticles on cell viability and markers of oxidative stress, Toxicology mechanisms and methods. 25(2015) 433-439.
[23] M.Y .Hanafi-Bojd, M.R. Jaafari, N. Ramezanian, M. Xue, M. Amin, N. Shahtahmassebi, B. Malaekeh-Nikouei, Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells, European Journal of Pharmaceutics and Biopharmaceutics. 89(2015).
[24] M. YahyaHanafi-Bojd, M. Jaafari, N. Ramezanian, K. Abnous, B. Malaekeh-Nikouei, Co-delivery of Epirubicin and siRNA Using Functionalized Mesoporous Silica Nanoparticles Enhances In vitro and In vivo Drug Efficacy, Current drug delivery. 13(2016).
[25] I.J.Z. Abadi, O. Sadeghi, H.R.L. Zhad, N. Tavassoli, V. Amani, M.M. Amini, Novel modified nanoporous silica for oral drug delivery: loading and release of clarithromycin, Journal of sol-gel science and technology. 61(2012) 95-90.
[26] E. Gultepe, D. Nagesha, S. Sridhar, M. Amiji, Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices, Adv Drug Deliv Rev. 62(2010) 305-315.
[27] M. Signoretto, E. Ghedini, V. Nichele, F. Pinna, V .Crocella, G. Cerrato, Effect of textural properties on the drug delivery behaviour of nanoporous TiO 2 matrices, Microporous and mesoporous Materials. 139(2011) 189-196.
[28] S. San Roman, J. Gullon, M. del Arco, C. Martin, Influence of the Surface Acidity of the Alumina on the Sustained Release of Ketoprofen, Journal of Pharmaceutical Sciences. (2016).
[29] G.R. Bardajee, A. Pourjavadi, R. Soleyman, Novel nano-porous hydrogel as a carrier matrix for oral delivery of tetracycline hydrochloride, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 392(2011) 16-24.
[30] D. Simon, S. Manuel, H. Varma, Novel nanoporous bioceramic spheres for drug delivery application:a preliminary in vitro investigation, Oral Surg Oral Med Oral Pathol Oral Radiol. 115(2013) e7-14.
[31] S.Y. Madani, F. Shabani, M.V. Dwek, A.M. Seifalian, Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment, Int J Nanomedicine. 8(2013) 941-950.
DOI: 10.2147/ijn.s36416
[32] P. Jeyamohan, T. Hasumura, Y. Nagaoka, Y. Yoshida, T. Maekawa, D.S. Kumar, Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy, Int J Nanomedicine. 8(2013).
DOI: 10.2147/ijn.s46054
[33] Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery, Acs Nano. 1(2007) 50-56.
DOI: 10.1021/nn700040t
[34] J. Chen, S. Chen, X. Zhao, L.V. Kuznetsova, S.S. Wong, I. Ojima, Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery, Journal of the American Chemical Society. 130(2008) 16778-16785.
DOI: 10.1021/ja805570f
[35] L. Zheng, S. Wu, L. Tan, H. Tan, B. Yu, Chitosan-functionalised single-walled carbon nanotubemediated drug delivery of SNX-2112 in cancer cells, Journal of biomaterials applications. 31(2016) 379-386.
[36] W. Shao, A. Paul, L. Rodes, S. Prakash, A New Carbon Nanotube-Based Breast Cancer Drug Delivery System: Preparation and In Vitro Analysis Using Paclitaxel, Cell biochemistry and biophysics. 71(2015) 1405-1414.
[37] W. Shao, A. Paul, B. Zhao, C. Lee, L. Rodes, S. Prakash, Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model, Biomaterials. 34(2013) 10109-10119.
[38] Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, H. Dai, Drug delivery with carbon nanotubes for in vivo cancer treatment, Cancer Res. 68(2008) 6652-6660.
[39] E. Heister, V. Neves, C. Tîlmaciu, K. Lipert, V.S. Beltrán, H.M. Coley, S.R.P. Silva, J. McFadden, Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy, Carbon. 47(2009).
[40] A.A. Bhirde, V. Patel, J. Gavard, G. Zhang, A.A. Sousa, A. Masedunskas, R.D. Leapman, R. Weigert, J.S. Gutkind, J.F. Rusling, Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery, Acs Nano. 3(2009).
DOI: 10.1021/nn800551s
[41] S. Dhar, Z. Liu, J. Thomale, H. Dai, S.J. Lippard, Targeted single-wall carbon nanotube-mediated Pt (IV) prodrug delivery using folate as a homing device, Journal of the American Chemical Society. 130(2008) 11467-11476.
DOI: 10.1021/ja803036e
[42] A. Kazemi-Beydokhti, S.Z. Heris, M.R. Jaafari, S. Nikoofal-Sahlabadi, M. Tafaghodi, M. Hatamipoor, Microwave functionalized single-walled carbon nanotube as nanocarrier for the delivery of anticancer drug cisplatin: in vitro and in vivo evaluation, Journal of Drug Delivery Science and Technology. 24(2014).
[43] X. Zhang, L. Meng, Q. Lu, Z. Fei, P.J. Dyson, Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes, Biomaterials. 30(2009) 6041-6047.
[44] M.R. McDevitt, D. Chattopadhyay, B.J. Kappel, J.S. Jaggi, S.R. Schiffman, C. Antczak, J.T. Njardarson, R. Brentjens, D.A. Scheinberg, Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes, Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 48(2007).
[45] M. Ma, M. Kazemzadeh‐Narbat, Y. Hui, S. Lu, C. Ding, D.D. Chen, R.E. Hancock, R. Wang, Local delivery of antimicrobial peptides using self‐organized TiO2 nanotube arrays for peri‐implant infections, Journal of Biomedical Materials Research Part A. 100(2012).
DOI: 10.1002/jbm.a.33251
[46] X. Zhang, R. Guo, J. Xu, Y. Lan, Y. Jiao, C. Zhou, Y. Zhao, Poly (l-lactide)/halloysite nanotube electrospun mats as dual-drug delivery systems and their therapeutic efficacy in infected full-thickness burns, Journal of biomaterials applications. 30(2015).
[47] A.M. Iga, J.H. Robertson, M.C. Winslet, A.M. Seifalian, Clinical potential of quantum dots, J Biomed Biotechnol. 2007, 10, 76087.
[48] I. Martynenko, V. Kuznetsova, А.O. Orlova, P. Kanaev, V. Maslov, A. Loudon, V. Zaharov, P. Parfenov, Y.K. Gun'ko, A. Baranov, Chlorin e6–ZnSe/ZnS quantum dots based system as reagent for photodynamic therapy, Nanotechnology. 26(2015) 512-525.
[49] Z. Liu, Q. Lin, Q. Huang, H. Liu ,C. Bao, W. Zhang, X. Zhong, L. Zhu, Semiconductor quantum dots photosensitizing release of anticancer drug, Chem Commun (Camb). 47(2011) 1482-1484.
DOI: 10.1039/c0cc04676k
[50] X. Gao, Y. Cui, R.M. Levenson, L.W. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat Biotechnol. 22(2004) 969-976.
DOI: 10.1038/nbt994
[51] S. Hanada, K. Fujioka, Y. Futamura, N. Manabe, A. Hoshino, K. Yamamoto, Evaluation of anti-inflammatory drug-conjugated silicon quantum dots: Their cytotoxicity and biological effect, International journal of molecular sciences. 14(2013).
DOI: 10.3390/ijms14011323
[52] L.M. Armijo, B.A. Akins, J.B. Plumley, A.C. Rivera, N.J. Withers, N.C. Cook, G.A. Smolyakov, D.L Huber, H.D. Smyth, M. Osinski, Highly efficient multifunctional MnSe/ZnSeS quantum dots for biomedical applications, in: SPIE BiOS, International Society for Optics and Photonics. 8595(2013).
DOI: 10.1117/12.2009563
[53] W. Maneeprakorn, M.A. Malik, P. O Brien, Developing chemical strategies for the assembly of nanoparticles into mesoscopic objects, Journal of the American Chemical Society. 132(2010) 1780-1781.
DOI: 10.1021/ja910022q
[54] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles, Journal of Materials Chemistry. 17(2007) 2679-2694.
DOI: 10.1039/b700857k
[55] C. Baslak, M.D. Kars, M. Karaman, M. Kus, Y. Cengeloglu, M. Ersoz, Biocompatible multi-walled carbon nanotube–CdTe quantum dot–polymer hybrids for medical applications, Journal of Luminescence. 160(2015) 9-15.
[56] M. Dutta, S. Jana, D .Basak, Quenching of photoluminescence in ZnO QDs decorating multiwalled carbon nanotubes, ChemPhysChem. 11(2010) 1774-1779.
[57] M. Olek, T. Busgen, M. Hilgendorff, M. Giersig, Quantum dot modified multiwall carbon nanotubes, The journal of physical chemistry B. 110 (2006) 12901-12904.
DOI: 10.1021/jp061453e
[58] B.J. Landi, C.M. Evans, J.J. Worman, S.L. Castro, S.G. Bailey, R.P. Raffaelle, Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes, Materials Letters. 60(2006) 3502-3506.
[59] Y. Ghasemi, P .Peymani, S. Afifi, Quantum dot: magic nanoparticle for imaging, detection and targeting, Acta Biomed. 80(2009) 156-165.
[60] M.L. Chen, Y.J. He, X.W. Chen, J.H. Wang, Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery, Langmuir. 28(2012) 16469-16476.
DOI: 10.1021/la303957y
[61] B. Pan, D. Cui, R. He, F. Gao, Y. Zhang, Covalent attachment of quantum dot on carbon nanotubes, Chemical physics letters. 417(2006) 419-424.
[62] G. Brakmane, S.Y. Madani ,A. Seifalian, Cancer Antibody Enhanced Real Time Imaging Cell Probes–a Novel Theranostic Tool using Polymer Linked Carbon Nanotubes and Quantum Dots, Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 13(2013).
[63] L. Nayef, J.S. Rendon, R. Matthys, R.C. Hamdy, M. Tabrizian, Liposome Encapsulated Quantum Dots Show Efficient In Vivo Retention of a Nanoparticulate Drug Delivery System at Its Target in a Rat Model of Distraction Osteogenesis, Journal of Nanopharmaceutics and Drug Delivery. 2(2014).
[64] P. Nigam, S. Waghmode, M. Louis, S. Wangnoo, P. Chavan, D. Sarkar, Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer, Journal of Materials Chemistry B. 2(2014) 3190-3195.
DOI: 10.1039/c4tb00015c
[65] A. Chandra, S. Deshpande, D.B. Shinde, V.K. Pillai, N. Singh, Mitigating the cytotoxicity of graphene quantum dots and enhancing their applications in bioimaging and drug delivery, ACS Macro Letters. 3(2014) 1064-1068.
DOI: 10.1021/mz500479k
[66] Z. Wang, J. Xia, C. Zhou, B. Via, Y. Xia, F. Zhang, Y. Li, L. Xia, J. Tang, Synthesis of strongly green-photoluminescent graphene quantum dots for drug carrier, Colloids and surfaces. B, Biointerfaces. 112(2013) 192-196.
[67] X. Wang, X. Sun, J. Lao, H. He, T. Cheng, M. Wang, S. Wang, F. Huang, Multifunctional grapheme quantum dots for simultaneous targeted cellular imaging and drug delivery, Colloids and surfaces. B, Biointerfaces. 122(2014) 638-644.
[68] C.L. Huang, C.C. Huang ,F.D. Mai, C.L. Yen, S.H. Tzing, H.T. Hsieh, Y.C. Ling, J.Y. Chang, Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery, Journal of Materials Chemistry B. 3(2015).
DOI: 10.1039/c4tb01650e
[69] V.V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, H. Parihar, Magnetic nanoparticle drug delivery systems for targeting tumor, Applied Nanoscience. 4(2014) 385-392.
[70] F.H. Chen, L.M. Zhang, Q.T. Chen, Y. Zhang, Z.J. Zhang, Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG functionalized porous silica shell, Chemical Communications. 46(2010).
DOI: 10.1039/c0cc02577a
[71] J. Gautier, E. Munnier, A. Paillard, K. Herve, L. Douziech-Eyrolles, M. Souce, P. Dubois, I. Chourpa, A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting, Int J Pharm. 423(2012) 16-25.
[72] R. Tietze, S. Lyer, S. Durr, T. Struffert, T. Engelhorn, M. Schwarz, E .Eckert, T. Goen, S. Vasylyev, W. Peukert, Efficient drug-delivery using magnetic nanoparticles—Biodistribution and therapeutic effects in tumour bearing rabbits, Nanomedicine: Nanotechnology, Biology and Medicine. 9(2013).
[73] H.L. Liu, M.Y. Hua, H.W. Yang, C.Y. Huang, P.C. Chu, J.S. Wu, I.C. Tseng, J.J. Wang, T.C. Yen, P.Y. Chen, K.C. Wei, Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain, Proceedings of the National Academy of Sciences of the United States of America. 107(2010).
[74] L. Philosof-Mazor, G.R. Dakwar, M. Popov, S. Kolusheva, A. Shames, C. Linder, S. Greenberg, E. Heldman, D. Stepensky, R. Jelinek, Bolaamphiphilic vesicles encapsulating iron oxide nanoparticles: new vehicles for magnetically targeted drug delivery, Int J Pharm. 450(2013).
[75] B. Chertok, A.E. David, V.C. Yang, Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration, Biomaterials. 31(2010) 6317-6324.
[76] M. Filippousi, S.A. Papadimitriou, D.N. Bikiaris, E. Pavlidou, M. Angelakeris, D. Zamboulis, H. Tian, G. Van Tendeloo, Novel core-shell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers: preparation, characterization and release properties, Int J Pharm. 448(2013).
[77] H. Deng, Z. Lei, Preparation and characterization of hollow Fe 3 O 4/SiO 2@ PEG–PLA nanoparticles for drug delivery, Composites Part B: Engineering. 54(2013) 194-199.
[78] E. Ebrahimi, A. Akbarzadeh, E. Abbasi, A.A. Khandaghi, F. Abasalizadeh, S. Davaran, Novel drug delivery system based on doxorubicin-encapsulated magnetic nanoparticles modified with PLGAPEG1000 copolymer, Artif Cells Nanomed Biotechnol. 44(2016).
[79] X. Li, M. Peng, P.A. Raju, Q. Zhang, Y. Hu, Y. Jin, Y. Cui, Dextran-Coated GoldMag Nanoparticles Enhance the Colloidal Stability and Controlled-Release of Doxorubicin, IEEE Transactions on Magnetics. 49(2013) 359-363.
[80] J. Huang, Q. Shu, L. Wang, H. Wu, A.Y. Wang, H. Mao, Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzymeresponsive release in small intestine, Biomaterials. 39(2015).
[81] F. Ye, A. Barrefelt, H. Asem, M. Abedi-Valugerdi, I. El-Serafi, M. Saghafian, K. Abu-Salah, S. Alrokayan, M. Muhammed, M. Hassan, Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging, Biomaterials. 35(2014).
[82] Y. Qi, G. Feng, Z. Huang, W. Yan, The application of super paramagnetic iron oxide-labeled mesenchymal stem cells in cell-based therapy, Mol Biol Rep. 40(2013) 2733-2740.
[83] A. Villaverde, E. Garcia-Fruitos, U. Rinas, J. Seras-Franzoso, A. Kosoy, J.L. Corchero, E. Vazquez, Packaging protein drugs as bacterial inclusion bodies for therapeutic applications, Microbial cell factories. 11(2012) p.76.
[84] R.A .Luis, R.B. Artal, Inclusion bodies for transdermal delivery of therapeutic and cosmetic agents, Google Patents, (2014).
[85] M. Liovic, M. Ozir, A.B. Zavec, S. Peternel, R. Komel, T. Zupancic, Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells, Microbial cell factories. 11(2012) p.67.
[86] K. Talafova, E. Hrabarova, D. Chorvat, J. Nahalka, Bacterial inclusion bodies as potential synthetic devices for pathogen recognition and a therapeutic substance release, Microbial cell factories. 12 (2013) p.16.
[87] J. Seras-Franzoso, K. Peebo, E. García-Fruitos, E. Vazquez, U. Rinas, A. Villaverde, Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates, Acta Biomaterialia. 10(2014) 1354-1359.