[1]
Y. Wang, Q. Ma, H. Jia, Z. Wang, One-step solution synthesis and formation mechanism of flower-like ZnO and its structural and optical characterization, Ceramics Int.42 (2016) 10751-10757.
DOI: 10.1016/j.ceramint.2016.03.200
Google Scholar
[2]
X. Yang, Y. Wang, Z. Wang, X. Lv, M. Yu,Preparation of CdS/TiO2 nanotube arrays and the enhanced photocatalytic property, Ceramics Int.42 (2016) 7192-7202.
DOI: 10.1016/j.ceramint.2016.01.109
Google Scholar
[3]
X. Yang, Z. Wang, X. Lv, Y. Wang, H. Jia, Enhanced photocatalytic activity of Zn-doped dendritic-like CdS structures synthesized by hydrothermal synthesis,J. Photochem. Photobiology A: Chemistry 329 (2016)175-181.
DOI: 10.1016/j.jphotochem.2016.07.005
Google Scholar
[4]
A. Kaskela, P. Laiho, N. Fukaya, K. Mustonen, T. Susi, H. Jiang, N. Houbenov, Y. Ohno, E.I. Kauppinen, Highly individual SWCNTs for high performance thin film electronics, Carbon 103(2016) 228-234.
DOI: 10.1016/j.carbon.2016.02.099
Google Scholar
[5]
R. Fang, G. Li, S. Zhao, L. Yin, K. Du, P. Hou, S. Wang, H-M Cheng, C. Liu, F. Li, Single- wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries, Nano Energy 42 (2017) 205-214.
DOI: 10.1016/j.nanoen.2017.10.053
Google Scholar
[6]
K. Awasthi, O.N. Srivastava, Synthesis of carbon nanotubes, in: V.A. Basiuk, E.V. Basiuk (Eds.), Chemistry of Carbon Nanotubes, American Scientific Publisher, USA, 2008,pp.1-26.
Google Scholar
[7]
X. Lv, F. Du,Y. Ma,Q. Wu,Y. Chen, Synthesis of high quality single-walled carbon nanotubes at large scale by electric arc using metal compounds, Carbon 43(2005)2020-(2022).
DOI: 10.1016/j.carbon.2005.02.042
Google Scholar
[8]
Y. Su, H. Wei, T. Li, H. Geng, Y. Zhang, Low-cost synthesis of single-walled carbon nanotubes by low-pressure air arc discharge, Mater. Res. Bull. 50 (2014) 23-25.
DOI: 10.1016/j.materresbull.2013.10.013
Google Scholar
[9]
N. Arora, N.N. Sharma, Arc discharge synthesis of carbon nanotubes: Comprehensive review, Dia. and Rel. Mater. 50 (2014)135-150.
DOI: 10.1016/j.diamond.2014.10.001
Google Scholar
[10]
Y. Su, Y. Zhang, H. Wei, Z. Yang, S-W E. Kong, Y. Zhang, Diameter-control of single-walled carbon nanotubes produced by magnetic field-assisted arc discharge, Carbon 50 (2012) 2556-2562.
DOI: 10.1016/j.carbon.2012.02.013
Google Scholar
[11]
X. Zhao, S. Inoue, M. Jinno, T. Suzuki, Y. Ando, Macroscopic oriented web of single-wall carbon nanotubes, Chem. Phys. Lett. 373(2003) 266-271.
DOI: 10.1016/s0009-2614(03)00610-9
Google Scholar
[12]
H. Yang, X.F. Shang, Z.H. Li, S.X. Qu, Z.Q. Gu, Y.B. Xu, M. Wang, Synthesis of large-area single-walled carbon nanotube films on glass substrate and their field electron emission properties, Mater. Chem. and Phys. 124 (2010)78-82.
DOI: 10.1016/j.matchemphys.2010.05.069
Google Scholar
[13]
K. Hasegawa,S. Noda, Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water, ACS Nano 5 (2011) 975-984.
DOI: 10.1021/nn102380j
Google Scholar
[14]
G. Zhong, Z.H. Warner, M. Fouquet, A.W. Robertson, B. Chen, J. Robertson, Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design, ACS Nano 6 (2012) 2893-2903.
DOI: 10.1021/nn203035x
Google Scholar
[15]
Q. Liu, W. Ren, D.W. Wang, Z.G. Chen, S. Pei, B. Liu, F. Li, H. Cong, C. Liu, H.M. Cheng, In situ assembly of multi-sheeted buckybooks from single-walled carbon nanotubes ACS Nano 3 (2009)707-713.
DOI: 10.1021/nn800852n
Google Scholar
[16]
C.L. Pint, Y.Q. Xu, M. Pasquali, R.H. Hauge, Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets, ACS Nano 2 (2008)1871-1878.
DOI: 10.1021/nn8003718
Google Scholar
[17]
B. Liu, Q. Liu, W. Ren, F. Li, C. Liu, H.M. Cheng, Synthesis of single-walled carbon nanotubes, their ropes and books, Comptes Rendus Physique 11(2010) 349-354.
DOI: 10.1016/j.crhy.2010.06.003
Google Scholar
[18]
A. Srivastava, O.N. Srivastava, S. Talapatra, R. Vajtai, P.M. Ajayan, Carbon nanotube filter, Nat. Mater. 3(2004)610-614.
DOI: 10.1038/nmat1192
Google Scholar
[19]
Y. Ma, L. Sheng, H. Zhao, K. An, L. Yu, J. Xu, X. Zhao, Synthesis of NiO/carbon shell/single-walled carbon nanotube composites as anode materials for lithium ion batteries, Solid State Sciences 46 (2015) 49-55.
DOI: 10.1016/j.solidstatesciences.2015.05.014
Google Scholar
[20]
A.K. Geim, Graphene status and prospects, Science 324 (2009)1530-1534.
Google Scholar
[21]
P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and applications, Materials Today 15(2012)86-97.
DOI: 10.1016/s1369-7021(12)70044-5
Google Scholar
[22]
Y. Zhao, X. Li, X. Zhou, Y. Zhang, Review on the graphene based optical fiber chemical and biological sensors, Sensors and Actuators B: Chemical 231(2016):324-340.
DOI: 10.1016/j.snb.2016.03.026
Google Scholar
[23]
C. Wu, G. Dong, L. Guan, Production of graphene sheets by a simple helium arc- discharge, Physica E 42 (2010)1267-1271.
DOI: 10.1016/j.physe.2009.10.054
Google Scholar
[24]
S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao Graphene - based electrochemical supercapacitors, J. Chem. Sci.120 (2008)9-13.
DOI: 10.1007/s12039-008-0002-7
Google Scholar
[25]
K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method, J. Phys. Chem. C, 113(2009) 4257-4259.
DOI: 10.1021/jp900791y
Google Scholar
[26]
R. Kumar, R.K. Singh, P.K. Dubey, P. Kumar, R.S. Tiwari, II-K. Oh, Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability, J. of Nanopart. Res. 15 (2013)1847- 1849.
DOI: 10.1007/s11051-013-1847-3
Google Scholar
[27]
Y. Wu, B. Wang, Y. Ma, Y. Huang, N. Li, F. Zhang, Y. Chen, Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films, Nano Res. 3 (2010)661-669.
DOI: 10.1007/s12274-010-0027-3
Google Scholar
[28]
S. Kim, Y. Song, J. Wright, M.J. Heller, Graphene bi- and tri-layers produced by a novel aqueous arc discharge process, Carbon 102 (2016)339-345.
DOI: 10.1016/j.carbon.2016.02.049
Google Scholar
[29]
Y. Chen, H. Zhao, L.Y. Sheng, K. An, J. Xu, Y. Ando, X. Zhao, Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2–inert gas mixtures, Chem. Phys. Lett. 538 (2012)72-76.
DOI: 10.1016/j.cplett.2012.04.020
Google Scholar
[30]
Z. Wang, N. Li, Z. Shi, Z. Gu, Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air, Nanotechnology 21 (2010)175602-175605.
DOI: 10.1088/0957-4484/21/17/175602
Google Scholar
[31]
I. Karaduman, E. Er, H. Çelikkan, N. Erk, S. Acar, Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles, J. Alloys and Comp.722 (2017)569-578.
DOI: 10.1016/j.jallcom.2017.06.152
Google Scholar
[32]
D.H. Suh, S. K. Park, P. Nakhanivej, S-W Kang, H.S. Park, Microwave synthesis of SnO2 nanocrystals decorated on the layer-by-layer reduced graphene oxide for an application into lithium ion battery anode, J. Alloys Comp. 702 (2017) 636-643.
DOI: 10.1016/j.jallcom.2017.01.245
Google Scholar
[33]
A. Klechikov, J. Sun, G. Hu, M. Zheng, T.Wågberg, A. V.Talyzin, Graphene decorated with metal nanoparticles: Hydrogen sorption and related art effects, Micro. Meso. Mat. 250 (2017)27-34.
DOI: 10.1016/j.micromeso.2017.05.014
Google Scholar
[34]
R. K.J. Vadali, V.S.S. Srikanth, Percolative NiO decorated reduced-graphene oxide with a giant dielectric permittivity, Mat. Res.Bull.99 (2018)324-330.
DOI: 10.1016/j.materresbull.2017.11.024
Google Scholar
[35]
P.V. Kamat, Graphene-based Nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support, J. Phys. Chem. Lett. 1(2010)520-527.
DOI: 10.1021/jz900265j
Google Scholar
[36]
Q. Fanga, Y. Shen, B. Chen, Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review, Chem. Engg. J. 264 (2015)753-771.
DOI: 10.1016/j.cej.2014.12.001
Google Scholar
[37]
A.M. Rao, J. Chen, E. Richter, U. Schlecht, P.C. Eklund, R.C. Haddon, U.D. Venkateswaran, Y.K. Kwon, D. Tomanek, Effect of van der Waals interactions on the raman modes in single walled carbon nanotubes, Phys. Rev. Lett. 86 (2001)3895- 3898.
DOI: 10.1103/physrevlett.86.3895
Google Scholar
[38]
B.D. Culity, Elements of X ray Diffraction. Addison-Wesley Publishing Company Inc. 1956: 99.
Google Scholar
[39]
M. Moravej, X. Yang, G.R. Nowling, J.P. Chang, R.F. Hicks, S.E. Babayan, Physics of high-pressure helium and argon radio-frequency plasmas, J. of Appl. Phys. 96 (2004)7011-7017.
DOI: 10.1063/1.1815047
Google Scholar
[40]
M. S. L. Hudson, H. Raghubanshi, S. Awasthi, T. Sadhasivam, A. Bhatnager, S. Simizu, S.G. Sankar, O.N. Srivastava, Hydrogen uptake of reduced graphene oxide and graphene sheets decorated with Fe nanoclusters, Int. Jr. of Hydr. Energy 39 (2014).
DOI: 10.1016/j.ijhydene.2014.03.118
Google Scholar
[41]
M.S.L. Hudson, K. Takahashi, A. Ramesh, S. Awasthi, A.K. Ghosh, P. Rayinfran, O.N. Srivastava, Graphene decorated with Fe nanoclusters for improving the hydrogen sorption kinetics of MgH2 experimental and theoretical evidence, Catal. Sci. Technol. 6 (2016).
DOI: 10.1039/c5cy01016k
Google Scholar
[42]
A.C. Ferrari, J.C. Meyer,V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett. 97 (2006)187401-187404.
DOI: 10.1103/physrevlett.97.187401
Google Scholar