Formation of Single-Walled Carbon Nanotube Buckybooks, Graphene Nanosheets and Metal Decorated Graphene

Article Preview

Abstract:

The various carbon nanostructures e.g. single-walled carbon nanotubes (SWCNTs) web, graphene nanosheets and metal nanoparticle decorated graphene sheets have been synthesized in large quantity by electrical arc discharge method under an argon atmosphere. The as-synthesized nanostructures were characterized by different characterization techniques such as XRD, SEM, TEM, Energy dispersive X-ray spectroscopy, Raman and FTIR spectroscopy. The SWCNT webs of length ~6 cm abundantly containing aligned SWCNTs have diameter of about 1.8 nm and form buckybook like structure. Few layer graphene (FLG) sheets were prepared by electric arc discharge of high purity graphite electrodes in a varying argon gas atmosphere (250-500T). The largest areal extent of graphene (with lowest number of layer i.e. four) has been found at 350T argon pressure. A one step method is also reported for the decoration of these graphene nanosheets with iron and nickel nanoparticles through arc discharge method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-53

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Wang, Q. Ma, H. Jia, Z. Wang, One-step solution synthesis and formation mechanism of flower-like ZnO and its structural and optical characterization, Ceramics Int.42 (2016) 10751-10757.

DOI: 10.1016/j.ceramint.2016.03.200

Google Scholar

[2] X. Yang, Y. Wang, Z. Wang, X. Lv, M. Yu,Preparation of CdS/TiO2 nanotube arrays and the enhanced photocatalytic property, Ceramics Int.42 (2016) 7192-7202.

DOI: 10.1016/j.ceramint.2016.01.109

Google Scholar

[3] X. Yang, Z. Wang, X. Lv, Y. Wang, H. Jia, Enhanced photocatalytic activity of Zn-doped dendritic-like CdS structures synthesized by hydrothermal synthesis,J. Photochem. Photobiology A: Chemistry 329 (2016)175-181.

DOI: 10.1016/j.jphotochem.2016.07.005

Google Scholar

[4] A. Kaskela, P. Laiho, N. Fukaya, K. Mustonen, T. Susi, H. Jiang, N. Houbenov, Y. Ohno, E.I. Kauppinen, Highly individual SWCNTs for high performance thin film electronics, Carbon 103(2016) 228-234.

DOI: 10.1016/j.carbon.2016.02.099

Google Scholar

[5] R. Fang, G. Li, S. Zhao, L. Yin, K. Du, P. Hou, S. Wang, H-M Cheng, C. Liu, F. Li, Single- wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries, Nano Energy 42 (2017) 205-214.

DOI: 10.1016/j.nanoen.2017.10.053

Google Scholar

[6] K. Awasthi, O.N. Srivastava, Synthesis of carbon nanotubes, in: V.A. Basiuk, E.V. Basiuk (Eds.), Chemistry of Carbon Nanotubes, American Scientific Publisher, USA, 2008,pp.1-26.

Google Scholar

[7] X. Lv, F. Du,Y. Ma,Q. Wu,Y. Chen, Synthesis of high quality single-walled carbon nanotubes at large scale by electric arc using metal compounds, Carbon 43(2005)2020-(2022).

DOI: 10.1016/j.carbon.2005.02.042

Google Scholar

[8] Y. Su, H. Wei, T. Li, H. Geng, Y. Zhang, Low-cost synthesis of single-walled carbon nanotubes by low-pressure air arc discharge, Mater. Res. Bull. 50 (2014) 23-25.

DOI: 10.1016/j.materresbull.2013.10.013

Google Scholar

[9] N. Arora, N.N. Sharma, Arc discharge synthesis of carbon nanotubes: Comprehensive review, Dia. and Rel. Mater. 50 (2014)135-150.

DOI: 10.1016/j.diamond.2014.10.001

Google Scholar

[10] Y. Su, Y. Zhang, H. Wei, Z. Yang, S-W E. Kong, Y. Zhang, Diameter-control of single-walled carbon nanotubes produced by magnetic field-assisted arc discharge, Carbon 50 (2012) 2556-2562.

DOI: 10.1016/j.carbon.2012.02.013

Google Scholar

[11] X. Zhao, S. Inoue, M. Jinno, T. Suzuki, Y. Ando, Macroscopic oriented web of single-wall carbon nanotubes, Chem. Phys. Lett. 373(2003) 266-271.

DOI: 10.1016/s0009-2614(03)00610-9

Google Scholar

[12] H. Yang, X.F. Shang, Z.H. Li, S.X. Qu, Z.Q. Gu, Y.B. Xu, M. Wang, Synthesis of large-area single-walled carbon nanotube films on glass substrate and their field electron emission properties, Mater. Chem. and Phys. 124 (2010)78-82.

DOI: 10.1016/j.matchemphys.2010.05.069

Google Scholar

[13] K. Hasegawa,S. Noda, Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water, ACS Nano 5 (2011) 975-984.

DOI: 10.1021/nn102380j

Google Scholar

[14] G. Zhong, Z.H. Warner, M. Fouquet, A.W. Robertson, B. Chen, J. Robertson, Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design, ACS Nano 6 (2012) 2893-2903.

DOI: 10.1021/nn203035x

Google Scholar

[15] Q. Liu, W. Ren, D.W. Wang, Z.G. Chen, S. Pei, B. Liu, F. Li, H. Cong, C. Liu, H.M. Cheng, In situ assembly of multi-sheeted buckybooks from single-walled carbon nanotubes ACS Nano 3 (2009)707-713.

DOI: 10.1021/nn800852n

Google Scholar

[16] C.L. Pint, Y.Q. Xu, M. Pasquali, R.H. Hauge, Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets, ACS Nano 2 (2008)1871-1878.

DOI: 10.1021/nn8003718

Google Scholar

[17] B. Liu, Q. Liu, W. Ren, F. Li, C. Liu, H.M. Cheng, Synthesis of single-walled carbon nanotubes, their ropes and books, Comptes Rendus Physique 11(2010) 349-354.

DOI: 10.1016/j.crhy.2010.06.003

Google Scholar

[18] A. Srivastava, O.N. Srivastava, S. Talapatra, R. Vajtai, P.M. Ajayan, Carbon nanotube filter, Nat. Mater. 3(2004)610-614.

DOI: 10.1038/nmat1192

Google Scholar

[19] Y. Ma, L. Sheng, H. Zhao, K. An, L. Yu, J. Xu, X. Zhao, Synthesis of NiO/carbon shell/single-walled carbon nanotube composites as anode materials for lithium ion batteries, Solid State Sciences 46 (2015) 49-55.

DOI: 10.1016/j.solidstatesciences.2015.05.014

Google Scholar

[20] A.K. Geim, Graphene status and prospects, Science 324 (2009)1530-1534.

Google Scholar

[21] P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and applications, Materials Today 15(2012)86-97.

DOI: 10.1016/s1369-7021(12)70044-5

Google Scholar

[22] Y. Zhao, X. Li, X. Zhou, Y. Zhang, Review on the graphene based optical fiber chemical and biological sensors, Sensors and Actuators B: Chemical 231(2016):324-340.

DOI: 10.1016/j.snb.2016.03.026

Google Scholar

[23] C. Wu, G. Dong, L. Guan, Production of graphene sheets by a simple helium arc- discharge, Physica E 42 (2010)1267-1271.

DOI: 10.1016/j.physe.2009.10.054

Google Scholar

[24] S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao Graphene - based electrochemical supercapacitors, J. Chem. Sci.120 (2008)9-13.

DOI: 10.1007/s12039-008-0002-7

Google Scholar

[25] K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method, J. Phys. Chem. C, 113(2009) 4257-4259.

DOI: 10.1021/jp900791y

Google Scholar

[26] R. Kumar, R.K. Singh, P.K. Dubey, P. Kumar, R.S. Tiwari, II-K. Oh, Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability, J. of Nanopart. Res. 15 (2013)1847- 1849.

DOI: 10.1007/s11051-013-1847-3

Google Scholar

[27] Y. Wu, B. Wang, Y. Ma, Y. Huang, N. Li, F. Zhang, Y. Chen, Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films, Nano Res. 3 (2010)661-669.

DOI: 10.1007/s12274-010-0027-3

Google Scholar

[28] S. Kim, Y. Song, J. Wright, M.J. Heller, Graphene bi- and tri-layers produced by a novel aqueous arc discharge process, Carbon 102 (2016)339-345.

DOI: 10.1016/j.carbon.2016.02.049

Google Scholar

[29] Y. Chen, H. Zhao, L.Y. Sheng, K. An, J. Xu, Y. Ando, X. Zhao, Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2–inert gas mixtures, Chem. Phys. Lett. 538 (2012)72-76.

DOI: 10.1016/j.cplett.2012.04.020

Google Scholar

[30] Z. Wang, N. Li, Z. Shi, Z. Gu, Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air, Nanotechnology 21 (2010)175602-175605.

DOI: 10.1088/0957-4484/21/17/175602

Google Scholar

[31] I. Karaduman, E. Er, H. Çelikkan, N. Erk, S. Acar, Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles, J. Alloys and Comp.722 (2017)569-578.

DOI: 10.1016/j.jallcom.2017.06.152

Google Scholar

[32] D.H. Suh, S. K. Park, P. Nakhanivej, S-W Kang, H.S. Park, Microwave synthesis of SnO2 nanocrystals decorated on the layer-by-layer reduced graphene oxide for an application into lithium ion battery anode, J. Alloys Comp. 702 (2017) 636-643.

DOI: 10.1016/j.jallcom.2017.01.245

Google Scholar

[33] A. Klechikov, J. Sun, G. Hu, M. Zheng, T.Wågberg, A. V.Talyzin, Graphene decorated with metal nanoparticles: Hydrogen sorption and related art effects, Micro. Meso. Mat. 250 (2017)27-34.

DOI: 10.1016/j.micromeso.2017.05.014

Google Scholar

[34] R. K.J. Vadali, V.S.S. Srikanth, Percolative NiO decorated reduced-graphene oxide with a giant dielectric permittivity, Mat. Res.Bull.99 (2018)324-330.

DOI: 10.1016/j.materresbull.2017.11.024

Google Scholar

[35] P.V. Kamat, Graphene-based Nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support, J. Phys. Chem. Lett. 1(2010)520-527.

DOI: 10.1021/jz900265j

Google Scholar

[36] Q. Fanga, Y. Shen, B. Chen, Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review, Chem. Engg. J. 264 (2015)753-771.

DOI: 10.1016/j.cej.2014.12.001

Google Scholar

[37] A.M. Rao, J. Chen, E. Richter, U. Schlecht, P.C. Eklund, R.C. Haddon, U.D. Venkateswaran, Y.K. Kwon, D. Tomanek, Effect of van der Waals interactions on the raman modes in single walled carbon nanotubes, Phys. Rev. Lett. 86 (2001)3895- 3898.

DOI: 10.1103/physrevlett.86.3895

Google Scholar

[38] B.D. Culity, Elements of X ray Diffraction. Addison-Wesley Publishing Company Inc. 1956: 99.

Google Scholar

[39] M. Moravej, X. Yang, G.R. Nowling, J.P. Chang, R.F. Hicks, S.E. Babayan, Physics of high-pressure helium and argon radio-frequency plasmas, J. of Appl. Phys. 96 (2004)7011-7017.

DOI: 10.1063/1.1815047

Google Scholar

[40] M. S. L. Hudson, H. Raghubanshi, S. Awasthi, T. Sadhasivam, A. Bhatnager, S. Simizu, S.G. Sankar, O.N. Srivastava, Hydrogen uptake of reduced graphene oxide and graphene sheets decorated with Fe nanoclusters, Int. Jr. of Hydr. Energy 39 (2014).

DOI: 10.1016/j.ijhydene.2014.03.118

Google Scholar

[41] M.S.L. Hudson, K. Takahashi, A. Ramesh, S. Awasthi, A.K. Ghosh, P. Rayinfran, O.N. Srivastava, Graphene decorated with Fe nanoclusters for improving the hydrogen sorption kinetics of MgH2 experimental and theoretical evidence, Catal. Sci. Technol. 6 (2016).

DOI: 10.1039/c5cy01016k

Google Scholar

[42] A.C. Ferrari, J.C. Meyer,V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett. 97 (2006)187401-187404.

DOI: 10.1103/physrevlett.97.187401

Google Scholar