Optical Losses in Hybrid Microcavity Based in Porous Semiconductors and its Application as Optic Chemical Sensor

Article Preview

Abstract:

In this study the experimental and theoretical optical analysis of a hybrid microcavity (HM) based in porous silicon (PS) and nanoporous anodic alumina (NAA) are presented. The microcavity was centered in the visible region at 760 nm. Distributed Bragg reflector (DBR) was obtained using galvanostatic anodizing method and while NAA by the two-step anodization technique. From SEM micrographs the HM different regions are observed. HM optical characterization in the visible region was done, considering two different light sources, point and non-point respectively. These results reveal a decrease in the quality factor (Q) from 350 to 190 when the source is exchanged; this behavior has been mainly attributed to the light scattering at NAA. Furthermore, it was possible to study Q change, through transmittance simulation using the transfer matrix and Landau-Lifshitz-Looyenga theoretical methods. When a point light source is used, there are no optical losses making possible to sense 1% of analyte resulting in a 0.29 nm redshift of the resonant peak. According with these results we propose to apply the HM as chemical optic sensor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-167

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth. H. Arrand, and T. M. Benson, Porous silicon multilayer optical waveguides, Thin Solid Films 276, 143–146 (1996).

DOI: 10.1016/0040-6090(95)08075-9

Google Scholar

[2] V. Mulloni and L. Pavesi, Porous silicon microcavities as optical chemical sensors,, Appl. Phys. Lett. 76, 18, 2523 - 2525 (2000).

DOI: 10.1063/1.126396

Google Scholar

[3] E. Osorio, R. Urteaga, H. Juárez, and R.R. Koropecki, Transmittance correlation of porous silicon multilayers used as a chemical sensor platform,, Sens. Actuators B. 213, 164-170 (2015).

DOI: 10.1016/j.snb.2015.02.058

Google Scholar

[4] L.N. Acquaroli, R. Urteaga, and R.R. Koropecki, Innovative design for optical porous silicon gas sensor,, Sens. Actuators B. 149, 189-193 (2010).

DOI: 10.1016/j.snb.2010.05.065

Google Scholar

[5] I. A. Levitsky, Porous Silicon Structures as Optical Gas Sensors,, Sensors 15, 19968-19991 (2015).

DOI: 10.3390/s150819968

Google Scholar

[6] F. A. Harraz, Porous silicon chemical sensors and biosensors: A review,, Sens. Actuators B. 202, 897–912 (2014).

DOI: 10.1016/j.snb.2014.06.048

Google Scholar

[7] J. F. Borrull, J. Pallarès, G. Macías, L. F. Marsal, Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications,, Materials 7, 5225-5253 (2014).

DOI: 10.3390/ma7075225

Google Scholar

[8] Y. Wang, Y. Chen, T. Kumeria, F. Ding, A. Evdokiou, D. Losic, and A. Santos, Facile Synthesis of Optical Microcavities by a Rationally Designed Anodization Approach: Tailoring Photonic Signals by Nanopore Structure,, ACS Appl. Mater. Interfaces 7, 9879-9888 (2015).

DOI: 10.1021/acsami.5b01885

Google Scholar

[9] K. I. Hartmann, A. Nieto, E. C. Wu, W. R. Freeman, J. S. Kim, J. Chhablani, M. J. Sailor, and L. Cheng, J. Ocul. Hydrosilylated Porous Silicon Particles Function as an Intravitreal Drug Delivery System for Daunorubicin,, Pharmacol. Ther. 29, 5, 493-500 (2013).

DOI: 10.1089/jop.2012.0205

Google Scholar

[10] O.Bisi, Stefano Ossicini and L.Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics,, Surf. Sci. Rep. 38, 1-126 (2000).

DOI: 10.1016/s0167-5729(99)00012-6

Google Scholar

[11] M. H. Chan, S. K. So, and K. W. Cheah, Optical absorption of free-standing porous silicon films,, J. Appl. Phys 79, 6, 3273-3275 (1996).

DOI: 10.1063/1.361216

Google Scholar

[12] V. Grivickas and P. Basmaji, Optical absorption in porous silicon of high porosity,, Thin Solid Films 235, 234-238 (1993).

DOI: 10.1016/0040-6090(93)90271-p

Google Scholar

[13] L. Pavesi, Porous silicon dielectric multilayers and microcavities,, L. Riv. Nuovo Cim 20, 10, 1-76 (1997).

DOI: 10.1007/bf02877374

Google Scholar

[14] D. W. Thompson, P. G. Snyder, L. Castro, L. Yan and P. Kaipa, Optical characterization of porous alumina from vacuum ultraviolet to midinfrared,. J. Appl. Phys. 97, 113511-1-113511-9 (2005).

DOI: 10.1063/1.1921336

Google Scholar

[15] A. Santos J. Mater. Nanoporous anodic alumina photonic crystals: fundamentals, developments and perspectives,, Chem. C 5, 5581—5599 (2017).

DOI: 10.1039/c6tc05555a

Google Scholar

[16] C. S. Law, S. Y. Lim and A. Santos, Fine tuning of transmission features in nanoporous anodic alumina distributed Bragg reflectors,, Proc. SPIE 10456, Nanophotonics Australasia (2017).

DOI: 10.1117/12.2282250

Google Scholar

[17] J. G. J. Peelen and R. Metselaar, Light scattering by pores in polycrystalline materials: Transmission properties of alumina,, J. Appl. Phys 45, 216-220 (1974).

DOI: 10.1063/1.1662961

Google Scholar

[18] R. Apetz and M. P. B. van Bruggen, Transparent Alumina: A Light-Scattering Model,, J. Am. Ceram. Soc., 86, 480–486 (2003).

DOI: 10.1111/j.1151-2916.2003.tb03325.x

Google Scholar

[19] P. J. Reece, G. Lérondel, W. H. Zheng, and M. Gal, Optical microcavities with subnanometer linewidths based on porous silicon,, Appl. Phys. Lett. 81, 4895-4897 (2002).

DOI: 10.1063/1.1531226

Google Scholar

[20] M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, Free-standing porous silicon single and multiple optical cavities,, J. Appl. Phys 93, 9724-9729 (2003).

DOI: 10.1063/1.1578170

Google Scholar

[21] C. S. Law, S. Y. Lim, R. M. Macalincag, A. D. Abell, and A. Santos, Light-Confining Nanoporous Anodic Alumina Microcavities by Apodized Stepwise Pulse Anodization,, ACS Appl. Nano Mater 1, 9, 4418-4434 (2018).

DOI: 10.1021/acsanm.8b00494

Google Scholar

[22] F. Pedrotti, Introduction to Optics (Prentice-Hall, Inc., 1993).

Google Scholar

[23] L. Cencha, C. A. Hernández, L. Forzani, R. Urteaga And R.R. Koropecki, Optical performance of hybrid porous silicon–porous alumina multilayers,, J. Appl. Phys 123, 183101-1-183101-8 (2018).

DOI: 10.1063/1.5027073

Google Scholar

[24] C. K. Y. Ng and A. H. W. Ngan, Precise Control of Nanohoneycomb Ordering over Anodic Aluminum Oxide of Square Centimeter Areas,, Chem. Mater 23 (23), 5264-5268 (2011).

DOI: 10.1021/cm202461z

Google Scholar

[25] W.Theiß, Optical properties of porous silicon,,Surf. Sci. Rep. 29, 3-4, 91-192, (1997).

Google Scholar

[26] H. Sohn, Refractive Index of Porous Silicon,, Handbook of Porous Silicon, 1-12 (2014).

DOI: 10.1007/978-3-319-04508-5_25-1

Google Scholar

[27] Masuda H and Fukuda K. Ofdered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina,, Science 268, 1466–1468 (1995).

DOI: 10.1126/science.268.5216.1466

Google Scholar

[28] H. R. R. Ashtiani and P Karami, Prediction of the Microstructural Variations of Cold-Worked Pure Aluminum during Annealing Process,, Modeling and Numerical Simulation of Material Science, 5, 1-14, (2015).

DOI: 10.4236/mnsms.2015.51001

Google Scholar

[29] D. F. Li, D. Z. Zhang, S. D. Liu, Z. J. Shan, X. M. Zhang, Q. Wang, and S. Q. Han, Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation,, Trans. Nonferrous Met. Soc. China 26, 6,1491−1497, (2016).

DOI: 10.1016/s1003-6326(16)64254-1

Google Scholar

[30] M. J. Sailor, Porous Silicon in Practice; Preparation, Characterization and Applications,, Wiley-VCH, ©2012, pp.133-187.

Google Scholar

[31] F. Li, L. Zhang, and R. M. Metzger, On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,, Chem. Mater., 10, 9,2470–2480 (1998).

DOI: 10.1021/cm980163a

Google Scholar