[1]
V. Siracusa, P. Rocculi, S. Romani, M. Dalla Rosa, Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12) (2008) 634-643.
DOI: 10.1016/j.tifs.2008.07.003
Google Scholar
[2]
J. Wróblewska-Krepsztul, T. Rydzkowski, G. Borowski, M. Szczypiński, T. Klepka, V. K. Thakur, Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization, 23 (4) (2018) 383-395.
DOI: 10.1080/1023666x.2018.1455382
Google Scholar
[3]
J.H. Song, R.J. Murphy, R. Narayan, G.B.H. Davies, Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364 (1526) (2009) 2127–2139.
DOI: 10.1098/rstb.2008.0289
Google Scholar
[4]
J. Rydz, M. Musioł, B. Zawidlak-Węgrzyńska, W. Sikorska, Present and Future of Biodegradable Polymers for Food Packaging Applications. In Biopolymers for Food Design (2018) (pp.431-467).
DOI: 10.1016/b978-0-12-811449-0.00014-1
Google Scholar
[5]
B. Ghanbarzadeh, H. Almasi, Biodegradable polymers. In: Chamy, R. ed., Biodegradation—Life of Science. InTech, Rijeka, Croatia. Available from: http://www.intechopen.com/books/biodegradation-life-ofscience/biodegradable-polymers. (2013).
DOI: 10.5772/56230
Google Scholar
[6]
V.S. Kulkarni, K.D. Butte, S.S. Rathod, Natural polymers: a comprehensive review. Int. J. Res. Pharm. Biomed. Sci. 3 (4), (2012).1597–1613.
Google Scholar
[7]
S. F. Hosseini, M. C. Gómez-Guillén, A state-of-the-art review on the elaboration of fish gelatin as bioactive packaging: Special emphasis on nanotechnology-based approaches, Inpress, (2018) Trends in Food Science & Technology.
DOI: 10.1016/j.tifs.2018.07.022
Google Scholar
[8]
A. S. Naidu, Natural food antimicrobial systems, 2000, CRC press.
Google Scholar
[9]
H. Wakabayashi, K. Yamauchi, M. Takase, Lactoferrin research, technology and applications. International Dairy Journal, 16(11), (2006), 1241-1251.
DOI: 10.1016/j.idairyj.2006.06.013
Google Scholar
[10]
J. Padrão, R. Machado, M. Casal, S. Lanceros-Méndez, L. R. Rodrigues, Dourado, F., Sencadas, V., Antibacterial performance of bovine lactoferrin-fish gelatine electrospun membranes. International Journal of Biological Macromolecules, 81, (2015), 608-614.
DOI: 10.1016/j.ijbiomac.2015.08.047
Google Scholar
[11]
M. Afshari, (Ed.). Electrospun nanofibers, 2016, Woodhead Publishing.
Google Scholar
[12]
Y. Yang, Z. Jia, J. Liu, L. Wang, Z, Guan, Effect of Solution Rate on Electrospinning. Ieee Conference on Electrical Insulation and Dielectric Phenomena, 14-17 Oct. 2007 S. 615-618. Vancouver Bc, Canada.
DOI: 10.1109/ceidp.2007.4451477
Google Scholar
[13]
T. Saga, K. Yamaguchi, History of antimicrobial agents and resistant bacteria. Available from http://www.med.or.jp/english/pdf/2009_02/103_108.pdf (2009).
Google Scholar
[14]
R. J. Fair, Y. Tor, Antibiotics and bacterial resistance in the 21st century. Perspectives in medicinal chemistry, (2014) 6, PMC-S14459.
Google Scholar
[15]
A. Del Cerro, I. Márquez, J. M. Prieto, Genetic diversity and antimicrobial resistance of Flavobacterium psychrophilum isolated from cultured rainbow trout, Onchorynchus mykiss (Walbaum), in Spain. Journal of Fish Diseases, 33(4) (2010) 285-291.
DOI: 10.1111/j.1365-2761.2009.01120.x
Google Scholar
[16]
M. S. Bruun, A. S. Schmidt, L. Madsen, I. Dalsgaard, Antimicrobial resistance patterns in Danish isolates of Flavobacterium psychrophilum. Aquaculture, 187(3-4) (2000) 201-212.
DOI: 10.1016/s0044-8486(00)00310-0
Google Scholar
[17]
M. Ture, , S. Misir, C. Altuntas, I. Kutlu, A Survey of Some Bacterial Fish Pathogens on Whiting (Merlangius merlanguseuxinus) in Eastern Black Sea Coast, Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 18 (2018) 1325-1329. http://doi.org/10.4194/1303-2712-v18_11_09.
DOI: 10.4194/1303-2712-v18_11_09
Google Scholar
[18]
H. W. Kwak, M. Shin, J. Y. Lee, H. Yun, D. W. Song, Y. Yang,... K. H. Lee, Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning. International journal of biological macromolecules, 102 (2017) 1092-1103.
DOI: 10.1016/j.ijbiomac.2017.04.087
Google Scholar
[19]
Mitchell, G. R. (Ed.)., Electrospinning: principles, practice and possibilities. Royal Society of Chemistry (2015).
Google Scholar
[20]
Y. Christanti, L. M. Walker, Surface tension driven jet break up of strainhardening polymer solutions. J. Non-Newton. Fluid, 2001, 100, pp.9-26.
DOI: 10.1016/s0377-0257(01)00135-5
Google Scholar
[21]
S., Ramakrishna, An introduction to electrospinning and nanofibers. World Scientific. (2005).
Google Scholar
[22]
J. H. Muyonga, C. G. B. Cole, K. G. Duodu, Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids (2004) 18, 581–592.
DOI: 10.1016/j.foodhyd.2003.08.009
Google Scholar
[23]
I. J. Haug, K. I. Draget, O. Smidsrød, Physical and rheological properties of fish gelatin compared to mammalian gelatin. Food Hydrocolloids, 18 (2004a) 203–213.
DOI: 10.1016/s0268-005x(03)00065-1
Google Scholar
[24]
B. H. Leuenberger, Investigation of viscosity and gelation properties of different mammalian and fish gelatins. Food Hydrocolloids, 5 (1991) 353–361.
DOI: 10.1016/s0268-005x(09)80047-7
Google Scholar
[25]
J. H. Wendorff, S. Agarwal, A. Greiner, Electrospinning: materials, processing, and applications. John Wiley & Sons (2012).
Google Scholar
[26]
E. Niehues, M. G. N. Quadri, Spinnability, Morphology and Mechanical Properties of Gelatins with Different Bloom Index. Brazilian Journal of Chemical Engineering, 34(1) (2017) 253-261.
DOI: 10.1590/0104-6632.20170341s20150418
Google Scholar
[27]
A. Altan, Z. Aytac, T. Uyar, Carvacrol loaded electrospun fibrous films from zein and poly (lactic acid) for active food packaging. Food Hydrocolloids, 81 (2018) 48-59.
DOI: 10.1016/j.foodhyd.2018.02.028
Google Scholar
[28]
Y. Liu, X. Liang, S. Wang, W. Qin, Q. Zhang, Electrospun Antimicrobial Polylactic Acid/Tea Polyphenol Nanofibers for Food-Packaging Applications. Polymers, 10(5) (2018) 561.
DOI: 10.3390/polym10050561
Google Scholar
[29]
C. R. Raetz, C. Whitfield, Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71 (2002) 635–700. 10.1146/annurev.biochem.71.110601.135414.
DOI: 10.1146/annurev.biochem.71.110601.135414
Google Scholar
[30]
B. B. Finlay, G. McFadden, Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124 (2006) 767–782. 10.1016/j.cell.2006.01.034.
DOI: 10.1016/j.cell.2006.01.034
Google Scholar
[31]
R. Shome, B.R., Shome, Antibiotic resistance pattern of fish bacteria from freshwater and marine sources in Andamans. Indian J. Fish. 46 (1999) 49 – 56.
Google Scholar
[32]
R. Son, G. Rusul, A.M. Sahilah, A. Zainuri, A.R. Raha, I. Salmah, Antibiotic resistance and plasmid profile of Aeromonas hydrophila isolates from cultured fish, Tilapia (Tilapia mossambica). Lett. Appl. Microbiol. 24 (1997) 479 – 482.
DOI: 10.1046/j.1472-765x.1997.00156.x
Google Scholar
[33]
G.W. Pettibone, J.P. Mear, B.M. Sampsell, Incidence of antibiotic and metal resistance and plasmid carriage in Aeromonas isolated from brown bullhead (Ictalurus nebulosus). Lett. Appl. Microbiol. 23 (1996) 234 – 240.
DOI: 10.1111/j.1472-765x.1996.tb00073.x
Google Scholar
[34]
W.C., Ko, H.-M. Wu, C.C. Tsung, J.-J. Yan, J.-J. Wu, Inducible b-lactam resistance in A. hydrophila: therapeutic challenge for antimicrobial therapy. J. Clin. Microbiol. 36 (1998) 3188 – 3192.
DOI: 10.1128/jcm.36.11.3188-3192.1998
Google Scholar
[35]
S. Y., Gu, Z. M., Wang, J., Ren, & C. Y. Zhang, Electrospinning of gelatin and gelatin/poly (l-lactide) blend and its characteristics for wound dressing. Mater Sci Eng: C. 29(6) (2009) 1822-1828.
DOI: 10.1016/j.msec.2009.02.010
Google Scholar
[36]
Z., Asvar, E., Mirzaei, N., Azarpira, B., Geramizadeh, M. Fadaie, Evaluation of electrospinning parameters on the tensile strength and suture retention strength of polycaprolactone nanofibrous scaffolds through surface response methodology. J Mech Behav Biomed. 75 (2017) 369-378.
DOI: 10.1016/j.jmbbm.2017.08.004
Google Scholar