Fish Gelatin Antimicrobial Electrospun Nanofibers for Active Food-Packaging Applications

Article Preview

Abstract:

A protein-based electrospun nanofiber from cold water fish gelatin (FG) including bovine lactoferrin (L) as an antimicrobial substance for food packaging applications was developed. Various amounts of L (0, 5, 10, 15, and 20%) were incorporated into FG electrospun nanofibers in order to test antimicrobial activity by disc diffusion method against Pseudomonas fluorescens, Acinetobacter johnsonii, Aeromonas hydrophila, Flavobacterium psychrophilum, Shewanella putrefaciens, and Escherichia coli commonly cause problems in food safety especially in fish products. It was obviously seen that 15% and 20% wt L incorporated FG electrospun nanofibers had significant inhibition zone against all bacterial strains while 5% and 10% L-FG had lower antimicrobial effects. In order to recommend fish gelatin as a food packaging material, mechanical properties should be enhanced to be competitive with synthetic polymers. It was revealed that mechanical strength of gelatin electrospun nanofibers depended on both fiber morphology and bioactive substance content. Neat FG (N-FG ) bead-free electrospun mats had higher fiber diameter (815 ±40 nm) while 15% and 20% L-FG had relatively lower diameter with beaded morphology, i.e., 348 ±32 nm, 229 ± 44 nm respectively. The tensile strength of 20% L-FG mats was significantly lower than the N-FG mats due to beady and thinner morphology. It can be concluded that L-FG electrospun nanofibers with high antimicrobial activity and improvable tensile strength is promising for active packaging applications.Keywords: Electrospinning, Pseudomonas spp., Escherichia coli, Shewanella spp., biodegradable, active packaging

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-97

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Siracusa, P. Rocculi, S. Romani, M. Dalla Rosa, Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12) (2008) 634-643.

DOI: 10.1016/j.tifs.2008.07.003

Google Scholar

[2] J. Wróblewska-Krepsztul, T. Rydzkowski, G. Borowski, M. Szczypiński, T. Klepka, V. K. Thakur, Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization, 23 (4) (2018) 383-395.

DOI: 10.1080/1023666x.2018.1455382

Google Scholar

[3] J.H. Song, R.J. Murphy, R. Narayan, G.B.H. Davies, Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364 (1526) (2009) 2127–2139.

DOI: 10.1098/rstb.2008.0289

Google Scholar

[4] J. Rydz, M. Musioł, B. Zawidlak-Węgrzyńska, W. Sikorska, Present and Future of Biodegradable Polymers for Food Packaging Applications. In Biopolymers for Food Design (2018) (pp.431-467).

DOI: 10.1016/b978-0-12-811449-0.00014-1

Google Scholar

[5] B. Ghanbarzadeh, H. Almasi, Biodegradable polymers. In: Chamy, R. ed., Biodegradation—Life of Science. InTech, Rijeka, Croatia. Available from: http://www.intechopen.com/books/biodegradation-life-ofscience/biodegradable-polymers. (2013).

DOI: 10.5772/56230

Google Scholar

[6] V.S. Kulkarni, K.D. Butte, S.S. Rathod, Natural polymers: a comprehensive review. Int. J. Res. Pharm. Biomed. Sci. 3 (4), (2012).1597–1613.

Google Scholar

[7] S. F. Hosseini, M. C. Gómez-Guillén, A state-of-the-art review on the elaboration of fish gelatin as bioactive packaging: Special emphasis on nanotechnology-based approaches, Inpress, (2018) Trends in Food Science & Technology.

DOI: 10.1016/j.tifs.2018.07.022

Google Scholar

[8] A. S. Naidu, Natural food antimicrobial systems, 2000, CRC press.

Google Scholar

[9] H. Wakabayashi, K. Yamauchi, M. Takase, Lactoferrin research, technology and applications. International Dairy Journal, 16(11), (2006), 1241-1251.

DOI: 10.1016/j.idairyj.2006.06.013

Google Scholar

[10] J. Padrão, R. Machado, M. Casal, S. Lanceros-Méndez, L. R. Rodrigues, Dourado, F., Sencadas, V., Antibacterial performance of bovine lactoferrin-fish gelatine electrospun membranes. International Journal of Biological Macromolecules, 81, (2015), 608-614.

DOI: 10.1016/j.ijbiomac.2015.08.047

Google Scholar

[11] M. Afshari, (Ed.). Electrospun nanofibers, 2016, Woodhead Publishing.

Google Scholar

[12] Y. Yang, Z. Jia, J. Liu, L. Wang, Z, Guan, Effect of Solution Rate on Electrospinning. Ieee Conference on Electrical Insulation and Dielectric Phenomena, 14-17 Oct. 2007 S. 615-618. Vancouver Bc, Canada.

DOI: 10.1109/ceidp.2007.4451477

Google Scholar

[13] T. Saga, K. Yamaguchi, History of antimicrobial agents and resistant bacteria. Available from http://www.med.or.jp/english/pdf/2009_02/103_108.pdf (2009).

Google Scholar

[14] R. J. Fair, Y. Tor, Antibiotics and bacterial resistance in the 21st century. Perspectives in medicinal chemistry, (2014) 6, PMC-S14459.

Google Scholar

[15] A. Del Cerro, I. Márquez, J. M. Prieto, Genetic diversity and antimicrobial resistance of Flavobacterium psychrophilum isolated from cultured rainbow trout, Onchorynchus mykiss (Walbaum), in Spain. Journal of Fish Diseases, 33(4) (2010) 285-291.

DOI: 10.1111/j.1365-2761.2009.01120.x

Google Scholar

[16] M. S. Bruun, A. S. Schmidt, L. Madsen, I. Dalsgaard, Antimicrobial resistance patterns in Danish isolates of Flavobacterium psychrophilum. Aquaculture, 187(3-4) (2000) 201-212.

DOI: 10.1016/s0044-8486(00)00310-0

Google Scholar

[17] M. Ture, , S. Misir, C. Altuntas, I. Kutlu, A Survey of Some Bacterial Fish Pathogens on Whiting (Merlangius merlanguseuxinus) in Eastern Black Sea Coast, Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 18 (2018) 1325-1329. http://doi.org/10.4194/1303-2712-v18_11_09.

DOI: 10.4194/1303-2712-v18_11_09

Google Scholar

[18] H. W. Kwak, M. Shin, J. Y. Lee, H. Yun, D. W. Song, Y. Yang,... K. H. Lee, Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning. International journal of biological macromolecules, 102 (2017) 1092-1103.

DOI: 10.1016/j.ijbiomac.2017.04.087

Google Scholar

[19] Mitchell, G. R. (Ed.)., Electrospinning: principles, practice and possibilities. Royal Society of Chemistry (2015).

Google Scholar

[20] Y. Christanti, L. M. Walker, Surface tension driven jet break up of strainhardening polymer solutions. J. Non-Newton. Fluid, 2001, 100, pp.9-26.

DOI: 10.1016/s0377-0257(01)00135-5

Google Scholar

[21] S., Ramakrishna, An introduction to electrospinning and nanofibers. World Scientific. (2005).

Google Scholar

[22] J. H. Muyonga, C. G. B. Cole, K. G. Duodu, Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids (2004) 18, 581–592.

DOI: 10.1016/j.foodhyd.2003.08.009

Google Scholar

[23] I. J. Haug, K. I. Draget, O. Smidsrød, Physical and rheological properties of fish gelatin compared to mammalian gelatin. Food Hydrocolloids, 18 (2004a) 203–213.

DOI: 10.1016/s0268-005x(03)00065-1

Google Scholar

[24] B. H. Leuenberger, Investigation of viscosity and gelation properties of different mammalian and fish gelatins. Food Hydrocolloids, 5 (1991) 353–361.

DOI: 10.1016/s0268-005x(09)80047-7

Google Scholar

[25] J. H. Wendorff, S. Agarwal, A. Greiner, Electrospinning: materials, processing, and applications. John Wiley & Sons (2012).

Google Scholar

[26] E. Niehues, M. G. N. Quadri, Spinnability, Morphology and Mechanical Properties of Gelatins with Different Bloom Index. Brazilian Journal of Chemical Engineering, 34(1) (2017) 253-261.

DOI: 10.1590/0104-6632.20170341s20150418

Google Scholar

[27] A. Altan, Z. Aytac, T. Uyar, Carvacrol loaded electrospun fibrous films from zein and poly (lactic acid) for active food packaging. Food Hydrocolloids, 81 (2018) 48-59.

DOI: 10.1016/j.foodhyd.2018.02.028

Google Scholar

[28] Y. Liu, X. Liang, S. Wang, W. Qin, Q. Zhang, Electrospun Antimicrobial Polylactic Acid/Tea Polyphenol Nanofibers for Food-Packaging Applications. Polymers, 10(5) (2018) 561.

DOI: 10.3390/polym10050561

Google Scholar

[29] C. R. Raetz, C. Whitfield, Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71 (2002) 635–700. 10.1146/annurev.biochem.71.110601.135414.

DOI: 10.1146/annurev.biochem.71.110601.135414

Google Scholar

[30] B. B. Finlay, G. McFadden, Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124 (2006) 767–782. 10.1016/j.cell.2006.01.034.

DOI: 10.1016/j.cell.2006.01.034

Google Scholar

[31] R. Shome, B.R., Shome, Antibiotic resistance pattern of fish bacteria from freshwater and marine sources in Andamans. Indian J. Fish. 46 (1999) 49 – 56.

Google Scholar

[32] R. Son, G. Rusul, A.M. Sahilah, A. Zainuri, A.R. Raha, I. Salmah, Antibiotic resistance and plasmid profile of Aeromonas hydrophila isolates from cultured fish, Tilapia (Tilapia mossambica). Lett. Appl. Microbiol. 24 (1997) 479 – 482.

DOI: 10.1046/j.1472-765x.1997.00156.x

Google Scholar

[33] G.W. Pettibone, J.P. Mear, B.M. Sampsell, Incidence of antibiotic and metal resistance and plasmid carriage in Aeromonas isolated from brown bullhead (Ictalurus nebulosus). Lett. Appl. Microbiol. 23 (1996) 234 – 240.

DOI: 10.1111/j.1472-765x.1996.tb00073.x

Google Scholar

[34] W.C., Ko, H.-M. Wu, C.C. Tsung, J.-J. Yan, J.-J. Wu, Inducible b-lactam resistance in A. hydrophila: therapeutic challenge for antimicrobial therapy. J. Clin. Microbiol. 36 (1998) 3188 – 3192.

DOI: 10.1128/jcm.36.11.3188-3192.1998

Google Scholar

[35] S. Y., Gu, Z. M., Wang, J., Ren, & C. Y. Zhang, Electrospinning of gelatin and gelatin/poly (l-lactide) blend and its characteristics for wound dressing. Mater Sci Eng: C. 29(6) (2009) 1822-1828.

DOI: 10.1016/j.msec.2009.02.010

Google Scholar

[36] Z., Asvar, E., Mirzaei, N., Azarpira, B., Geramizadeh, M. Fadaie, Evaluation of electrospinning parameters on the tensile strength and suture retention strength of polycaprolactone nanofibrous scaffolds through surface response methodology. J Mech Behav Biomed. 75 (2017) 369-378.

DOI: 10.1016/j.jmbbm.2017.08.004

Google Scholar