Tuning the Rheology of Nano-Sized Silica Suspensions with Silicon Nitride Particles

Article Preview

Abstract:

In this paper, a non-Newtonian fluid was fabricated dispersing nanosized silica particles in a polyethylene glycol medium. The rheology of the suspension was investigated in a stress-controlled rheometer under increasing shear rate. Based on the rheological measurements, the suspension exhibited shear thickening behavior which gives a drastic viscosity grow with the increase in the shear rate. In order to investigate the role of the micro-sized additive particles on the rheology of silica based suspension, silicon nitride particles were included in the suspension with three different concentrations. The results were discussed in terms of important parameters for the shear thickening mechanism such as critical shear rate, peak viscosity, thickening ratio and initial viscosity. According to the results, shear thickening behavior can be controlled altering the amount of silicon nitride particles in the suspension.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-70

Citation:

Online since:

February 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. L. Hoffman, Discontinuous and Dilatant Viscosity Behavior in Concentrated Suspensions. I. Observation of a Flow Instability, J. Rheol., 16 (1972) 155–174.

DOI: 10.1122/1.549250

Google Scholar

[2] R. L. Hoffman, Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests, J. Colloid Interface Sci., 46, (1974) 491–506.

DOI: 10.1016/0021-9797(74)90059-9

Google Scholar

[3] G. Bossis, J. F. Brady, The rheology of Brownian suspensions, J. Chem. Phys., 91 (1989) 1866–1874.

Google Scholar

[4] A. A. Catherall, J. R. Melrose, R. C. Ball, Shear thickening and order–disorder effects in concentrated colloids at high shear rates, J. Rheol., 44 (2000) 1–25.

DOI: 10.1122/1.551072

Google Scholar

[5] J. R. Melrose, R. C. Ball, Contact networks, in continuously shear thickening colloids, J. Rheol., 48 (2004) 961–978.

DOI: 10.1122/1.1784784

Google Scholar

[6] J. R. Melrose, R. C. Ball, Continuous shear thickening transitions in model concentrated colloids—The role of interparticle forces, J. Rheol., 48 (2004) 937–960.

DOI: 10.1122/1.1784783

Google Scholar

[7] X. Z. Zhang, W. H. Li, X. L. Gong, The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper, Smart Mater. Struct., 17 (2008) 035027.

DOI: 10.1088/0964-1726/17/3/035027

Google Scholar

[8] M. A. Dawson, Composite plates with a layer of fluid-filled, reticulated foam for blast protection of infrastructure, Int. J. Impact Eng., 36 (2009) 1288–1295.

DOI: 10.1016/j.ijimpeng.2009.03.008

Google Scholar

[9] F. J. Galindo-Rosales, S. Martínez-Aranda, L. Campo-Deaño, CorkSTFμfluidics – A novel concept for the development of eco-friendly light-weight energy absorbing composites, Mater. Des., 82 (2015) 326–334.

DOI: 10.1016/j.matdes.2014.12.025

Google Scholar

[10] S. Gürgen, M. C. Kuşhan, The effect of silicon carbide additives on the stab resistance of shear thickening fluid treated fabrics, Mech. Adv. Mater. Struct., 24 (2017) 1381–1390.

DOI: 10.1080/15376494.2016.1231355

Google Scholar

[11] S. Gürgen, M. C. Kuşhan, High Performance Fabrics in Body Protective Systems, Mater. Sci. Forum, 880 (2016) 132–135.

DOI: 10.4028/www.scientific.net/msf.880.132

Google Scholar

[12] S. Gürgen, The Influence of Boundary Condition on the Impact Behavior of High Performance Fabrics, Adv. Eng. Forum, 28 (2018) 47–54.

DOI: 10.4028/www.scientific.net/aef.28.47

Google Scholar

[13] S. Gürgen, An investigation on composite laminates including shear thickening fluid under stab condition, J. Compos. Mater., In-press (2018).

DOI: 10.1177/0021998318796158

Google Scholar

[14] A. Majumdar, B. S. Butola, A. Srivastava, Development of soft composite materials with improved impact resistance using Kevlar fabric and nano-silica based shear thickening fluid, Mater. Des., 54 (2014) 295–300.

DOI: 10.1016/j.matdes.2013.07.086

Google Scholar

[15] S. Gürgen, M. C. Kuşhan, The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids, Polym. Test., 64 (2017) 296–306.

DOI: 10.1016/j.polymertesting.2017.11.003

Google Scholar

[16] S. Gürgen, M. C. Kuşhan, The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives, Compos. Part Appl. Sci. Manuf., 94 (2017) 50–60.

DOI: 10.1016/j.compositesa.2016.12.019

Google Scholar

[17] S. Gürgen, M. C. Kuşhan, W. Li, Shear thickening fluids in protective applications: A review, Prog. Polym. Sci., 75 (2017) 48–72.

DOI: 10.1016/j.progpolymsci.2017.07.003

Google Scholar

[18] B. J. Maranzano, N. J. Wagner, Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition, J. Chem. Phys., 117 (2002) 10291.

DOI: 10.1063/1.1519253

Google Scholar

[19] P. D'Haene, J. Mewis, G. G. Fuller, Scattering Dichroism Measurements of Flow-Induced Structure of a Shear Thickening Suspension, J. Colloid Interface Sci., 156 (1993) 350–358.

DOI: 10.1006/jcis.1993.1122

Google Scholar

[20] J. W. Bender, N. J. Wagner, Optical Measurement of the Contributions of Colloidal Forces to the Rheology of Concentrated Suspensions, J. Colloid Interface Sci., 172 (1995) 171–184.

DOI: 10.1006/jcis.1995.1240

Google Scholar

[21] W. H. Boersma, Computer simulations of shear thickening of concentrated dispersions, J. Rheol., 39 (1995) 841–860.

DOI: 10.1122/1.550621

Google Scholar

[22] I. R. Peters, S. Majumdar, H. M. Jaeger, Direct observation of dynamic shear jamming in dense suspensions, Nature, 532 (2016) 214–217.

DOI: 10.1038/nature17167

Google Scholar

[23] R. Mari, R. Seto, J. F. Morris, M. M. Denn, Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions, J. Rheol., 58 (2014) 1693–1724.

DOI: 10.1122/1.4890747

Google Scholar

[24] N. Y. C. Lin, B. M. Guy, M. Hermes, C. Ness, J. Sun, W. C.  K. Poon, I. Cohen, Hydrodynamic and Contact Contributions to Continuous Shear Thickening in Colloidal Suspensions, Phys. Rev. Lett., 115 (2015) 228304.

DOI: 10.1103/physrevlett.115.228304

Google Scholar

[25] S. Pednekar, J. Chun, J. F. Morris, Simulation of shear thickening in attractive colloidal suspensions, Soft Matter, 13 (2017) 1773–1779.

DOI: 10.1039/c6sm02553f

Google Scholar

[26] A. Ghosh, A. Majumdar, B. S. Butola, Role of surface chemistry of fibres additives on rheological behavior of ceramic particle based Shear Thickening Fluids, Ceram. Int., In-press (2018).

DOI: 10.1016/j.ceramint.2018.08.213

Google Scholar

[27] S. Gürgen, W. Li, M. C. Kuşhan, The rheology of shear thickening fluids with various ceramic particle additives, Mater. Des., 104 (2016) 312–319.

DOI: 10.1016/j.matdes.2016.05.055

Google Scholar

[28] S. Gürgen, M. C. Kuşhan, W. Li, The effect of carbide particle additives on rheology of shear thickening fluids, Korea-Aust. Rheol. J., 28 (2016) 121–128.

DOI: 10.1007/s13367-016-0011-x

Google Scholar

[29] S. Gürgen, M. C. Kuşhan, Rheological Properties of Shear Thickening Fluids, Journal of Polytechnic, 19 (2016) 409–414.

Google Scholar