Effectiveness of Calcium Deficiency in Nanosized Hydroxyapatite for Removal of Fe(II), Cu(II), Ni(II) and Cr(VI) Ions from Aqueous Solutions

Article Preview

Abstract:

In this work, nanosized calcium deficient hydroxyapatite (nCDHA) was synthesized by the precipitation method, and then utilized as an adsorbent for removal of Fe (II), Cu (II), Ni (II) and Cr (VI) ions from aqueous solutions after characterizing it by various techniques as scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and BET method. A possible structure of synthesized nCDHA was proposed. The adsorption study indicated that the adsorption equilibrium is well fitted with Langmuir isotherm model with the maximum adsorption capacities followed the order of Fe (II) > Cu (II) > Ni (II) > Cr (VI) with the values of 137.23, 128.02, 83.19 and 2.92 mg/g, respectively. The ion-exchange mechanism was dominant for the adsorption of metal ions onto nCDHA at initial metal concentrations lower than 0.01 mol/L. Along with the ion-exchange mechanism, there was an additional precipitation occurred on the surface of nCDHA in the case of Fe (II) and Cu (II) at initial concentrations higher than 0.01 mol/L.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-27

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Harris, F. Viliani, Strategic health assessment for large scale industry development activities: An introduction, Environ. Impact Assess. Rev. 68 (2018) 59-65.

DOI: 10.1016/j.eiar.2017.10.002

Google Scholar

[2] A.L. Allison, Hazardous Materials and Wastewater: Treatment, Removal and Analysis, Nova Science Publishers, Inc., New York, (2017).

Google Scholar

[3] E. Beutler, P. Lee, Molecular Diagnostics. Academic Press, San Diego, (2010).

Google Scholar

[4] M. Jing, R. Liu, W. Yan, X. Tan, Y. Chen, Investigations on the effects of Cu2+ on the structure and function of human serum albumin. Luminescence 31 (2016) 557-564.

DOI: 10.1002/bio.2995

Google Scholar

[5] D. Vadim, S. Anatoliy, Y. Vladimir, The effect of Cu2+ on ion transport systems of the plant cell plasmalemma. Plant Physiol. 114 (1997) 1313-1325.

DOI: 10.1104/pp.114.4.1313

Google Scholar

[6] J.L. Gollan, A.T. Hewlett, Handbook of Liver Disease. 3rd ed., W.B. Saunders, Philadelpia, (2012).

Google Scholar

[7] N. Murphy, Critical Care Medicine. 3rd ed., Philadelphia, (2008).

Google Scholar

[8] D.G. Barceloux, D. Barceloux, Chromium. J. Toxicol. Clin. Toxicol. 37 (1999) 173-194.

Google Scholar

[9] D. Mohan, H. Kumar, A. Sarswat, M. Alexandre-Franco, C.U. Pittman, Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem. Eng. J. 236 (2014) 513–528.

DOI: 10.1016/j.cej.2013.09.057

Google Scholar

[10] M.S. Chiou, G.S. Chuang, Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads. Chemosphere 62 (2006) 731-740.

DOI: 10.1016/j.chemosphere.2005.04.068

Google Scholar

[11] K.M. Ajay, Smart Materials for Waste Water Applications. John Wiley & Sons, (2016).

Google Scholar

[12] S. Brundavanam, G.E.J. Poinern, D. Fawcett, Kinetic and adsorption behaviour of aqueous Fe(II), Cu(II) and Zn(II) using a 30 nm hydroxyapatite based powder synthesized via a combined ultrasound and microwave based technique. Am. J. Mat. Sci. 5 (2015) 31-40.

Google Scholar

[13] S.B. Chen, Y.B. Ma, L. Chen, K. Xian, Adsorption of aqueous Cd(II), Pb(II), Cu(II) ions by nano-hydroxyapatie: Single and multi-metal competitive adsorption study. Geochem. J. 44 (2010) 223-239.

DOI: 10.2343/geochemj.1.0065

Google Scholar

[14] Y. Nishiyama, T. Hanafusa, J. Yamashita, Y. Yamamoto, T. Ono, Adsorption and removal of strontium in aqueous solution by synthetic hydroxyapatite. J. Radioanal. Nucl. Chem. 307 (2016) 1279-1285.

DOI: 10.1007/s10967-015-4228-9

Google Scholar

[15] G.N. Kousalya, M.R. Gandhi, S. Meenakshi, Removal of Toxic Cr(VI) Ions from Aqueous Solution Using Nano-Hydroxyapatite-Based Chitin and Chitosan Hybrid Composites. Adsorp. Sci. Technol. 28 (2010) 49-64.

DOI: 10.1260/0263-6174.28.1.49

Google Scholar

[16] V.T. Le, V.D. Doan, C.N. Phuc, A.M. Trubisin, Synthesis of Calcium-Deficient Carbonated Hydroxyapatite as Promising Sorbent for Removal of Lead Ions. J. Nano Res. 45 (2016) 124-133.

DOI: 10.4028/www.scientific.net/jnanor.45.124

Google Scholar

[17] I. Mobasherpour, E. Salahi, M. Pazouki, Comparative of the removal of Pb(II), Cd(II) and Ni(II) by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study. Arab. J. Chem. 5 (2012) 439-446.

DOI: 10.1016/j.arabjc.2010.12.022

Google Scholar

[18] S. Park, A. Gomez-Flores, Y.S. Chung, H. Kim, Removal of Cadmium and Lead from Aqueous Solution by Hydroxyapatite/Chitosan Hybrid Fibrous Sorbent: Kinetics and Equilibrium Studies. J. Chem. 2015, 12.

DOI: 10.1155/2015/396290

Google Scholar

[19] Y. Sekine, R. Motokawa, N. Kozai, T. Ohnuki, D. Matsumura, T. Tsuji, R. Kawasaki, K. Akiyoshi, Calcium-deficient Hydroxyapatite as a Potential Sorbent for Strontium. Sci. Rep. 7 (2017) (2064).

DOI: 10.1038/s41598-017-02269-z

Google Scholar

[20] Y. Lei, J.J. Guan, W. Chen, Q.F. Ke, C.Q. Zhang, Y.P. Gou, Fabrication of hydroxyapatite/chitosan porous materials for Pb(II) removal from aqueous solution. RSC Adv. 5 (2015) 25462-25470.

DOI: 10.1039/c5ra01628b

Google Scholar

[21] S. Jebri, I. Khattech, M. Jemal, Standard enthalpy, entropy and Gibbs free energy of formation of «A» type carbonate phosphocalcium hydroxyapatites. J. Chem. Thermodyn. 106 (2017) 84-94.

DOI: 10.1016/j.jct.2016.10.035

Google Scholar

[22] S. Isabel, Overall Aspects of Non-Traditional Glasses: Synthesis, Properties and Applications, Bentham Science Publishers, (2016).

Google Scholar

[23] Z. Shen, Y. Zhang, O. McMillan, F. Jin, A. Al-Takkaa, Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environ. Sci. Pollut. Res. 24 (2017) 12809-12819.

DOI: 10.1007/s11356-017-8847-2

Google Scholar

[24] N. Gupta, A.K. Kushwaha, M.C. Chattopadhyaya, Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. J. Taiwan Inst. Chem. Eng. 43 (2012) 125-131.

DOI: 10.1016/j.jtice.2011.07.009

Google Scholar

[25] I. Mobasherpour, E. Salahi, M. Pazouki, Removal of nickel (II) from aqueous solutions by using nano-crystalline calcium hydroxyapatite. J. Saudi Chem. Soc. 15 (2011) 105-112.

DOI: 10.1016/j.jscs.2010.06.003

Google Scholar

[26] B. Sridevi, E.J.P. Gérrard, F. Derek, Kinetic and Adsorption Behaviour of Aqueous Fe(II), Cu(II) and Zn(II) using a 30 nm Hydroxyapatite Based Powder Synthesized via a Combined Ultrasound and Microwave Based Technique. Am. J. Mater. Sci. 5 (2015) 31-40.

Google Scholar

[27] S.A. Abo-El-Enein, H.A. El-boraey, R.M. El-korashy, A.A. Sery, Synthesis and characterization of nanohydroxyapatite and its application. Nature and Science 15 (2017) 96-104.

Google Scholar

[28] G.M. Rajiv, G.N. Kousalyab, S. Meenakshia, Removal of copper(II) using chitin/chitosan nano-hydroxyapatite composite. Int. J. Biol. Macromol. 48 (2011) 119–124.

DOI: 10.1016/j.ijbiomac.2010.10.009

Google Scholar

[29] F. Fernane, S. Boudia, F. Aiouache, Removal Cu(II) and Ni(II) by natural and synthetic hydroxyapatites: a comparative study. Desalin. Water Treat. 52 (2014) 2856-2862.

DOI: 10.1080/19443994.2013.807084

Google Scholar

[30] V. Gopalakannan, N. Viswanathan, Development of Nano-Hydroxyapatite Embedded Gelatin Biocomposite for Effective Chromium(VI) Removal. Ind. Eng. Chem. Res. 54 (2015) 12561-12569.

DOI: 10.1021/acs.iecr.5b01224

Google Scholar

[31] S. Hokkanen, A. Bhatnagar, E. Repo, E. Repo, S. Lou, M. Sillapapa, Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution. Chem. Eng. J., 283 (2016) 445-452.

DOI: 10.1016/j.cej.2015.07.035

Google Scholar