[1]
Y. Zhou, G. Jiang, Study on properties of composite oxides TiO2/SiO2, Chin. J. Chem. Eng. 10 (2002) 349-353.
Google Scholar
[2]
M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, J. Lee, M.H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. Mater. Chem. A, 2 (2014) 637-644.
DOI: 10.1039/c3ta14052k
Google Scholar
[3]
Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima, Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photochem. Photobiol., A: Chemistry, 106 (1997) 51-56.
DOI: 10.1016/s1010-6030(97)00038-5
Google Scholar
[4]
V. Binas, D. Venieri, D. Kotzias, G. Kiriakidis, Modified TiO2 based photocatalysts for improved air and health quality, J. Materiomics. 3 (2017) 3-16.
DOI: 10.1016/j.jmat.2016.11.002
Google Scholar
[5]
R. Zallen, M.P. Moret, The optical absorption edge of brookite TiO2, Solid State Commun., 137 (2006) 154-157.
DOI: 10.1016/j.ssc.2005.10.024
Google Scholar
[6]
D. Wang, L. Xiao, Q. Luo, X. Li, J. An, Y. Duan, Highly efficient visible light TiO2 photocatalyst prepared by sol–gel method at temperatures lower than 300° C, J. Hazard. Mater., 192 (2011) 150-159.
DOI: 10.1016/j.jhazmat.2011.04.110
Google Scholar
[7]
G.J. Yang, C.J. Li, X.C. Huang, C.X. Li, Y.Y. Wang, Influence of Silver Doping on Photocatalytic Activity of Liquid-Flame-Sprayed-Nanostructured TiO2 Coating, J. Therm. Spray Technol., 16 (2007) 881-885.
DOI: 10.1007/s11666-007-9110-z
Google Scholar
[8]
L. Li, H. Zhuang, D. Bu, Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with lanthanum and iodine, Appl. Surf. Sci., 257 (2011) 9221-9225.
DOI: 10.1016/j.apsusc.2011.06.007
Google Scholar
[9]
Z. Li, W. Shen, W. He, X. Zu, Effect of Fe-doped TiO2 nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue, J. Hazard. Mater., 155 (2008) 590-594.
DOI: 10.1016/j.jhazmat.2007.11.095
Google Scholar
[10]
C. Su, B.Y. Hong, C.M. Tseng, Sol–gel preparation and photocatalysis of titanium dioxide, Catal. Today, 96 (2004) 119-126.
DOI: 10.1016/j.cattod.2004.06.132
Google Scholar
[11]
S. Gelover, P. Mondragón, A. Jiménez, Titanium dioxide sol–gel deposited over glass and its application as a photocatalyst for water decontamination, J. Photochem. Photobiol., A: Chemistry, 165 (2004) 241-246.
DOI: 10.1016/j.jphotochem.2004.03.023
Google Scholar
[12]
F. Chekin, S. Bagheri, S.B.A. Hamid, Synthesis of Pt doped TiO2 nanoparticles: characterization and application for electrocatalytic oxidation of l-methionine, Sens. Actuators, B: Chemical, 177 (2013) 898-903.
DOI: 10.1016/j.snb.2012.12.002
Google Scholar
[13]
M. Zaharescu, C. Pirlog, M. Crisan, M. Gartner, A. Vasilescu, TiO2-based vitreous coatings obtained by sol-gel method. J. Non-Cryst. Solids, 160 (1993) 162-166.
DOI: 10.1016/0022-3093(93)90296-a
Google Scholar
[14]
M. Oves, M. Arshad, M.S. Khan, A.S. Ahmed, A. Azam, I.M. Ismail, Anti-microbial activity of cobalt doped zinc oxide nanoparticles: Targeting water borne bacteria, J. Saudi. Chem. Soc., 19 (2015) 581-588.
DOI: 10.1016/j.jscs.2015.05.003
Google Scholar
[15]
C.C. Trapalis, P. Keivanidis, G. Kordas, M. Zaharescu, M. Crisan, A. Szatvanyi, M. Gartner, TiO2 (Fe3+) nanostructured thin films with antibacterial properties, Thin Solid Films, 433 (2003) 186-190.
DOI: 10.1016/s0040-6090(03)00331-6
Google Scholar
[16]
A.M. Stoyanova, H.Y. Hitkova, N.K. Ivanova, A.D. Bachvarova-Nedelcheva, R.S. Iordanova, M.P. Sredkova, Photocatalytic and antibacterial activity of Fe-doped TiO2 nanoparticles prepared by nonhydrolytic sol-gel method, Bulg. Chem. Commun., 45 (2013) 497-504.
Google Scholar
[17]
P. Kokila, V. Senthilkumar, K.P. Nazeer, Preparation and photo catalytic activity of Fe3+-doped TiO2 nanoparticles, Arch. Phys. Res., 2 (2011) 246-253.
Google Scholar
[18]
J.L. Endrino, R.G.S.V. Prasad, D. Basavaraju, K.N. Rao, A. Mosquera, C.S. Naveen, A.R. Phani, Antimicrobial properties of nanostructured TiO2 plus Fe additive thin films synthesized by a cost-effective sol–gel process, Nanosci. Nanotech. Let., 3 (2011) 629-636.
DOI: 10.1166/nnl.2011.1238
Google Scholar
[19]
W. Zhang, Y. Chen, S. Yu, S. Chen, Y. Yin, Preparation and antibacterial behavior of Fe3+-doped nanostructured TiO2 thin films, Thin Solid Films, 516 (2008) 4690-4694.
DOI: 10.1016/j.tsf.2007.08.053
Google Scholar
[20]
S. Boonyod, W. Sutthisripok, L. Sikong, Antibacterial activity of TiO2 and Fe3+ doped TiO2 nanoparticles synthesized at low temperature, Adv. Mat. Res, 214 (2011) 197-201.
DOI: 10.4028/www.scientific.net/amr.214.197
Google Scholar
[21]
J.A. Wang, R. Limas-Ballesteros, T. Lopez, A. Moreno, R. Gomez, O. Novaro, X. Bokhimi, Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO2 photocatalysts, J. Phys. Chem. B, 105 (2001) 9692-9698.
DOI: 10.1021/jp0044429
Google Scholar
[22]
I. Ganesh, P.P. Kumar, A.K. Gupta, P.S. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications, Process. Appl. Ceram. 6 (2012) 21-36.
DOI: 10.2298/pac1201021g
Google Scholar
[23]
Z. Li, W. Shen, W. He, X. Zu, Effect of Fe-doped TiO2 nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue, J. Hazard. Mater., 155 (2008) 590-594.
DOI: 10.1016/j.jhazmat.2007.11.095
Google Scholar
[24]
J. Wang, W. Sun, Z. Zhang, Z. Jiang, X. Wang, R. Xu, R. Li, X. Zhang, Preparation of Fe-doped mixed crystal TiO2 catalyst and investigation of its sonocatalytic activity during degradation of azo fuchsine under ultrasonic irradiation, J. Colloid Interface Sci., 320 (2008) 202-209.
DOI: 10.1016/j.jcis.2007.12.013
Google Scholar
[25]
Z. Mesgari, M. Gharagozlou, A. Khosravi, K. Gharanjig, Spectrophotometric studies of visible light induced photocatalytic degradation of methyl orange using phthalocyanine-modified Fe-doped TiO2 nanocrystals, Spectrochim. Acta, Part A, 92 (2012) 148-153.
DOI: 10.1016/j.saa.2012.02.055
Google Scholar
[26]
K. Naeem, F. Ouyang, Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light, Physica B: Condensed Matter, 405 (2010) 221-226.
DOI: 10.1016/j.physb.2009.08.060
Google Scholar
[27]
S. Sood, A. Umar, S.K. Mehta, S.K. Kansal, Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds, J. Colloid Interface Sci., 450 (2015) 213-223.
DOI: 10.1016/j.jcis.2015.03.018
Google Scholar
[28]
H. Lipson, H. Steeple, Interpretation of X-ray powder diffraction patterns, Macmillan, New York, (1970).
Google Scholar
[29]
C.Y.W. Lin, D. Channei, P. Koshy, A. Nakaruk, C.C. Sorrell, Effect of Fe doping on TiO2 films prepared by spin coating, Ceram. Int., 38 (2012) 3943-3946.
DOI: 10.1016/j.ceramint.2012.01.047
Google Scholar
[30]
M. Effendi, Effect of doping Fe on TiO2 thin films prepared by spin coating method, J. Basic. Appl. Sci., 12 (2012), 107-110.
Google Scholar
[31]
T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin solid films, 351 (1999) 260-263.
DOI: 10.1016/s0040-6090(99)00205-9
Google Scholar
[32]
S. Zhan, J. Yang, Y. Liu, N. Wang, J. Dai, H. Yu, X. Gao, Y. Li, Mesoporous Fe2O3-doped TiO2 nanostructured fibers with higher photocatalytic activity, J. Colloid Interface Sci., 355 (2011) 328-333.
DOI: 10.1016/j.jcis.2010.12.024
Google Scholar
[33]
A.M. Peiro, J. Peral, C. Domingo, X. Domenech, J.A. Ayllón, Low-temperature deposition of TiO2 thin films with photocatalytic activity from colloidal anatase aqueous solutions, Chem. Mater., 13 (2001) 2567-2573.
DOI: 10.1021/cm0012419
Google Scholar
[34]
Y. Luo, Z. Lu, Y. Jiang, D. Wang, L. Yang, P. Huo, Z. Da, X. Bai, X. Xie, P. Yang, Selective photodegradation of 1-methylimidazole-2-thiol by the magnetic and dual conductive imprinted photocatalysts based on TiO2/Fe3O4/MWCNTs, Chem. Eng. J. 240 (2014) 244-252.
DOI: 10.1016/j.cej.2013.11.088
Google Scholar
[35]
N. Nasralla, M. Yeganeh, Y. Astuti, S. Piticharoenphun, N. Shahtahmasebi, A. Kompany, M. Karimipour, B.G. Mendis, N.R.J. Poolton, L. Šiller, Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol-gel method, Sci. Iran., 20 (2013) 1018-1022.
DOI: 10.1016/j.physb.2017.02.010
Google Scholar
[36]
W. Zhao, Z. Bai, A. Ren, B. Guo, C. Wu, Sunlight photocatalytic activity of CdS modified TiO2 loaded on activated carbon fibers, Appl. Surf. Sci., 256 (2010) 3493-3498.
DOI: 10.1016/j.apsusc.2009.12.062
Google Scholar
[37]
D.I. Anwar, D. Mulyadi, Synthesis of Fe-TiO2 Composite as a Photocatalyst for Degradation of Methylene Blue, Procedia Chem., 17 (2015) 49-54.
DOI: 10.1016/j.proche.2015.12.131
Google Scholar
[38]
W.C. Hung, Y.C. Chen, H. Chu, T.K. Tseng, Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane, Appl. Surf. Sci., 255 (2008) 2205-2213.
DOI: 10.1016/j.apsusc.2008.07.079
Google Scholar
[39]
J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water, J. Mol. Catal. A: Chem., 216 (2004) 35-43.
DOI: 10.1016/j.molcata.2004.01.008
Google Scholar
[40]
U. Arellano, M. Asomoza, F. Ramirez, Antimicrobial activity of Fe–TiO2 thin film photocatalysts, J. Photochem. Photobiol., A: Chemistry, 222 (2011) 159-165.
DOI: 10.1016/j.jphotochem.2011.05.016
Google Scholar
[41]
L. Caballero, K.A. Whitehead, N.S. Allen, J. Verran, Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light, J. Photochem. Photobiol., A: Chemistry, 202 (2009) 92-98.
DOI: 10.1016/j.jphotochem.2008.11.005
Google Scholar