Synthesis and Antimicrobial Activity of Fe:TiO2 Particles

Article Preview

Abstract:

TiO2 and iron-doped TiO2 were synthesized by sol-gel method. TiO2 and 0.5 %mol Fe:TiO2 were calcined at 500 and 800 °C for 3 h. The synthesized particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-VIS diffuse reflectance spectrophotometry (UV/DRS), scanning electron microscopy (SEM) and scanning electron microscope-energy dispersive X-Ray analysis (SEM-EDX). The XRD patterns of all samples that were calcined at 500 °C showed only anatase phase. On increasing temperature from 500 to 800 °C, the anatase phase transformed to rutile phase. For 0.5 %mol Fe:TiO2, pseudobrookite (Fe2TiO5) phase was observed at 800 °C. The particles that contained rutile showed higher antibacterial activities against E. coli, B. subtilis, and S. aureus than anatase phase, under fluorescent irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-38

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhou, G. Jiang, Study on properties of composite oxides TiO2/SiO2, Chin. J. Chem. Eng. 10 (2002) 349-353.

Google Scholar

[2] M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, J. Lee, M.H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. Mater. Chem. A, 2 (2014) 637-644.

DOI: 10.1039/c3ta14052k

Google Scholar

[3] Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima, Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photochem. Photobiol., A: Chemistry, 106 (1997) 51-56.

DOI: 10.1016/s1010-6030(97)00038-5

Google Scholar

[4] V. Binas, D. Venieri, D. Kotzias, G. Kiriakidis, Modified TiO2 based photocatalysts for improved air and health quality, J. Materiomics. 3 (2017) 3-16.

DOI: 10.1016/j.jmat.2016.11.002

Google Scholar

[5] R. Zallen, M.P. Moret, The optical absorption edge of brookite TiO2, Solid State Commun., 137 (2006) 154-157.

DOI: 10.1016/j.ssc.2005.10.024

Google Scholar

[6] D. Wang, L. Xiao, Q. Luo, X. Li, J. An, Y. Duan, Highly efficient visible light TiO2 photocatalyst prepared by sol–gel method at temperatures lower than 300° C, J. Hazard. Mater., 192 (2011) 150-159.

DOI: 10.1016/j.jhazmat.2011.04.110

Google Scholar

[7] G.J. Yang, C.J. Li, X.C. Huang, C.X. Li, Y.Y. Wang, Influence of Silver Doping on Photocatalytic Activity of Liquid-Flame-Sprayed-Nanostructured TiO2 Coating, J. Therm. Spray Technol., 16 (2007) 881-885.

DOI: 10.1007/s11666-007-9110-z

Google Scholar

[8] L. Li, H. Zhuang, D. Bu, Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with lanthanum and iodine, Appl. Surf. Sci., 257 (2011) 9221-9225.

DOI: 10.1016/j.apsusc.2011.06.007

Google Scholar

[9] Z. Li, W. Shen, W. He, X. Zu, Effect of Fe-doped TiO2 nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue, J. Hazard. Mater., 155 (2008) 590-594.

DOI: 10.1016/j.jhazmat.2007.11.095

Google Scholar

[10] C. Su, B.Y. Hong, C.M. Tseng, Sol–gel preparation and photocatalysis of titanium dioxide, Catal. Today, 96 (2004) 119-126.

DOI: 10.1016/j.cattod.2004.06.132

Google Scholar

[11] S. Gelover, P. Mondragón, A. Jiménez, Titanium dioxide sol–gel deposited over glass and its application as a photocatalyst for water decontamination, J. Photochem. Photobiol., A: Chemistry, 165 (2004) 241-246.

DOI: 10.1016/j.jphotochem.2004.03.023

Google Scholar

[12] F. Chekin, S. Bagheri, S.B.A. Hamid, Synthesis of Pt doped TiO2 nanoparticles: characterization and application for electrocatalytic oxidation of l-methionine, Sens. Actuators, B: Chemical, 177 (2013) 898-903.

DOI: 10.1016/j.snb.2012.12.002

Google Scholar

[13] M. Zaharescu, C. Pirlog, M. Crisan, M. Gartner, A. Vasilescu, TiO2-based vitreous coatings obtained by sol-gel method. J. Non-Cryst. Solids, 160 (1993) 162-166.

DOI: 10.1016/0022-3093(93)90296-a

Google Scholar

[14] M. Oves, M. Arshad, M.S. Khan, A.S. Ahmed, A. Azam, I.M. Ismail, Anti-microbial activity of cobalt doped zinc oxide nanoparticles: Targeting water borne bacteria, J. Saudi. Chem. Soc., 19 (2015) 581-588.

DOI: 10.1016/j.jscs.2015.05.003

Google Scholar

[15] C.C. Trapalis, P. Keivanidis, G. Kordas, M. Zaharescu, M. Crisan, A. Szatvanyi, M. Gartner, TiO2 (Fe3+) nanostructured thin films with antibacterial properties, Thin Solid Films, 433 (2003) 186-190.

DOI: 10.1016/s0040-6090(03)00331-6

Google Scholar

[16] A.M. Stoyanova, H.Y. Hitkova, N.K. Ivanova, A.D. Bachvarova-Nedelcheva, R.S. Iordanova, M.P. Sredkova, Photocatalytic and antibacterial activity of Fe-doped TiO2 nanoparticles prepared by nonhydrolytic sol-gel method, Bulg. Chem. Commun., 45 (2013) 497-504.

Google Scholar

[17] P. Kokila, V. Senthilkumar, K.P. Nazeer, Preparation and photo catalytic activity of Fe3+-doped TiO2 nanoparticles, Arch. Phys. Res., 2 (2011) 246-253.

Google Scholar

[18] J.L. Endrino, R.G.S.V. Prasad, D. Basavaraju, K.N. Rao, A. Mosquera, C.S. Naveen, A.R. Phani, Antimicrobial properties of nanostructured TiO2 plus Fe additive thin films synthesized by a cost-effective sol–gel process, Nanosci. Nanotech. Let., 3 (2011) 629-636.

DOI: 10.1166/nnl.2011.1238

Google Scholar

[19] W. Zhang, Y. Chen, S. Yu, S. Chen, Y. Yin, Preparation and antibacterial behavior of Fe3+-doped nanostructured TiO2 thin films, Thin Solid Films, 516 (2008) 4690-4694.

DOI: 10.1016/j.tsf.2007.08.053

Google Scholar

[20] S. Boonyod, W. Sutthisripok, L. Sikong, Antibacterial activity of TiO2 and Fe3+ doped TiO2 nanoparticles synthesized at low temperature, Adv. Mat. Res, 214 (2011) 197-201.

DOI: 10.4028/www.scientific.net/amr.214.197

Google Scholar

[21] J.A. Wang, R. Limas-Ballesteros, T. Lopez, A. Moreno, R. Gomez, O. Novaro, X. Bokhimi, Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO2 photocatalysts, J. Phys. Chem. B, 105 (2001) 9692-9698.

DOI: 10.1021/jp0044429

Google Scholar

[22] I. Ganesh, P.P. Kumar, A.K. Gupta, P.S. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications, Process. Appl. Ceram. 6 (2012) 21-36.

DOI: 10.2298/pac1201021g

Google Scholar

[23] Z. Li, W. Shen, W. He, X. Zu, Effect of Fe-doped TiO2 nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue, J. Hazard. Mater., 155 (2008) 590-594.

DOI: 10.1016/j.jhazmat.2007.11.095

Google Scholar

[24] J. Wang, W. Sun, Z. Zhang, Z. Jiang, X. Wang, R. Xu, R. Li, X. Zhang, Preparation of Fe-doped mixed crystal TiO2 catalyst and investigation of its sonocatalytic activity during degradation of azo fuchsine under ultrasonic irradiation, J. Colloid Interface Sci., 320 (2008) 202-209.

DOI: 10.1016/j.jcis.2007.12.013

Google Scholar

[25] Z. Mesgari, M. Gharagozlou, A. Khosravi, K. Gharanjig, Spectrophotometric studies of visible light induced photocatalytic degradation of methyl orange using phthalocyanine-modified Fe-doped TiO2 nanocrystals, Spectrochim. Acta, Part A, 92 (2012) 148-153.

DOI: 10.1016/j.saa.2012.02.055

Google Scholar

[26] K. Naeem, F. Ouyang, Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light, Physica B: Condensed Matter, 405 (2010) 221-226.

DOI: 10.1016/j.physb.2009.08.060

Google Scholar

[27] S. Sood, A. Umar, S.K. Mehta, S.K. Kansal, Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds, J. Colloid Interface Sci., 450 (2015) 213-223.

DOI: 10.1016/j.jcis.2015.03.018

Google Scholar

[28] H. Lipson, H. Steeple, Interpretation of X-ray powder diffraction patterns, Macmillan, New York, (1970).

Google Scholar

[29] C.Y.W. Lin, D. Channei, P. Koshy, A. Nakaruk, C.C. Sorrell, Effect of Fe doping on TiO2 films prepared by spin coating, Ceram. Int., 38 (2012) 3943-3946.

DOI: 10.1016/j.ceramint.2012.01.047

Google Scholar

[30] M. Effendi, Effect of doping Fe on TiO2 thin films prepared by spin coating method, J. Basic. Appl. Sci., 12 (2012), 107-110.

Google Scholar

[31] T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin solid films, 351 (1999) 260-263.

DOI: 10.1016/s0040-6090(99)00205-9

Google Scholar

[32] S. Zhan, J. Yang, Y. Liu, N. Wang, J. Dai, H. Yu, X. Gao, Y. Li, Mesoporous Fe2O3-doped TiO2 nanostructured fibers with higher photocatalytic activity, J. Colloid Interface Sci., 355 (2011) 328-333.

DOI: 10.1016/j.jcis.2010.12.024

Google Scholar

[33] A.M. Peiro, J. Peral, C. Domingo, X. Domenech, J.A. Ayllón, Low-temperature deposition of TiO2 thin films with photocatalytic activity from colloidal anatase aqueous solutions, Chem. Mater., 13 (2001) 2567-2573.

DOI: 10.1021/cm0012419

Google Scholar

[34] Y. Luo, Z. Lu, Y. Jiang, D. Wang, L. Yang, P. Huo, Z. Da, X. Bai, X. Xie, P. Yang, Selective photodegradation of 1-methylimidazole-2-thiol by the magnetic and dual conductive imprinted photocatalysts based on TiO2/Fe3O4/MWCNTs, Chem. Eng. J. 240 (2014) 244-252.

DOI: 10.1016/j.cej.2013.11.088

Google Scholar

[35] N. Nasralla, M. Yeganeh, Y. Astuti, S. Piticharoenphun, N. Shahtahmasebi, A. Kompany, M. Karimipour, B.G. Mendis, N.R.J. Poolton, L. Šiller, Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol-gel method, Sci. Iran., 20 (2013) 1018-1022.

DOI: 10.1016/j.physb.2017.02.010

Google Scholar

[36] W. Zhao, Z. Bai, A. Ren, B. Guo, C. Wu, Sunlight photocatalytic activity of CdS modified TiO2 loaded on activated carbon fibers, Appl. Surf. Sci., 256 (2010) 3493-3498.

DOI: 10.1016/j.apsusc.2009.12.062

Google Scholar

[37] D.I. Anwar, D. Mulyadi, Synthesis of Fe-TiO2 Composite as a Photocatalyst for Degradation of Methylene Blue, Procedia Chem., 17 (2015) 49-54.

DOI: 10.1016/j.proche.2015.12.131

Google Scholar

[38] W.C. Hung, Y.C. Chen, H. Chu, T.K. Tseng, Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane, Appl. Surf. Sci., 255 (2008) 2205-2213.

DOI: 10.1016/j.apsusc.2008.07.079

Google Scholar

[39] J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water, J. Mol. Catal. A: Chem., 216 (2004) 35-43.

DOI: 10.1016/j.molcata.2004.01.008

Google Scholar

[40] U. Arellano, M. Asomoza, F. Ramirez, Antimicrobial activity of Fe–TiO2 thin film photocatalysts, J. Photochem. Photobiol., A: Chemistry, 222 (2011) 159-165.

DOI: 10.1016/j.jphotochem.2011.05.016

Google Scholar

[41] L. Caballero, K.A. Whitehead, N.S. Allen, J. Verran, Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light, J. Photochem. Photobiol., A: Chemistry, 202 (2009) 92-98.

DOI: 10.1016/j.jphotochem.2008.11.005

Google Scholar