Conductivity of Porous Phosphate-Silicate Glass Synthesized with Non-Ionic Surfactant

Article Preview

Abstract:

Porous, phosphate-silicate glass with high-conductivity and nano-size pores was synthesized through a xero-gel route, using non-ionic surfactant polyethylene glycol monocetyl ether (Brij 56) to control pore size. The influences of Brij 56 concentration on pore size and conductivity under different humidity were studied by measuring conductivity and calculating the volume ratio of adsorbed-water to pore volume. Samples prepared with 0.1 wt% Brij 56 had 5.2 nm pore size, 0.91 volume ratio, and narrower pore size distribution than other samples. The nano-size pores were filled with water, which in pores of 5.2 nm is mostly chemically bonded with the hydroxyl groups on the pore surfaces, resulting in higher conductivity than other samples in high relative humidity (over 55%).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-124

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Fricke, A. Emmerling, Aerogels, J. Am. Ceram. Soc. 75 (1992) 2027–(2037).

Google Scholar

[2] L. Kocon, F. Depetis, Ultralow density silica aerogels by alcohol supercritical drying, J. Non-Cryst. Solids. 225 (1998) 96–101.

DOI: 10.1016/s0022-3093(98)00322-6

Google Scholar

[3] M.R. Ayers, A.J. Hunt, Synthesis and properties of chitosan -silica hybrid aerogels, J. Non-Cryst. Solids. 285 (2001) 123–127.

DOI: 10.1016/s0022-3093(01)00442-2

Google Scholar

[4] A. Venkateswara Rao, S.D. Bhagat, Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid-base) Xero-gel process, Solid State Sci. 6 (2004) 945–952.

DOI: 10.1016/j.solidstatesciences.2004.04.010

Google Scholar

[5] A. Venkateswara Rao, M.M. Kulkarni, Effect of glycerol additive on physical properties of hydrophobic silica aerogels, Mater. Chem. Phys. 77 (2002) 819–825.

DOI: 10.1016/s0254-0584(02)00207-9

Google Scholar

[6] L.W. Hrubesh, Aerogels: The world's lightest solids, Chem. Ind. 17 (1990) 824–827.

Google Scholar

[7] V. Gibiat, O. Lefeuvre, T. Woignier, J. Pelous, J. Phalippou, Acoustic properties and potential applications of silica aerogels, J. Non-Cryst. Solids 186 (1995) 244–255.

DOI: 10.1016/0022-3093(95)00049-6

Google Scholar

[8] J.W. Long, K.E. Swider Lyons, R.M. Stroud, D.R. Rolison, Design of pore and matter architectures in manganese oxide charge-storage materials, Electrochem. Solid-State Lett. 3 (2000) 453-456.

DOI: 10.1149/1.1391177

Google Scholar

[9] D.A. Ward, E.I. Ko, Preparing catalytic materials by the sol–gel method, J. Ind. Eng. Chem. Res. 34 (1995) 421-433.

DOI: 10.1021/ie00041a001

Google Scholar

[10] C.T. Wang, C.L. Wu, I.C. Chen, Y.H. Huang, Humidity sensors based on silica nanoparticle aerogel thin films, Sens. Actuators B 107 (2005) 402–410.

DOI: 10.1016/j.snb.2004.10.034

Google Scholar

[11] M.L.N. Perdigoto, R.C. Martins, N. Rocha, M.J. Quina, L. Gando-Ferreira, R. Patrício, L. Durães, Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions, J. Colloid Interface Sci. 380 (2012) 134–140.

DOI: 10.1016/j.jcis.2012.04.062

Google Scholar

[12] O. Nilsson, O. Sandberg, G. Bäckström, Thermal conductivity of B2O3 glass under pressure, Int. J. Thermophys. 6 (1985) 267–273.

DOI: 10.1007/bf00522148

Google Scholar

[13] M. Nogami, Y. Abe, Evidence of water-cooperative proton conduction in silica glasses, Phys. Rev. B 55 (1997) 12108–12112.

DOI: 10.1103/physrevb.55.12108

Google Scholar

[14] M. Nogami, R. Nagao, C. Wong, Proton conduction in porous silica glasses with high water content, J. Phys. Chem. B 102 (1998) 5772–5775.

DOI: 10.1021/jp981059j

Google Scholar

[15] M. Nogami, R. Nagao, C. Wong, T. Kasuga, T. Hayakawa, High proton conductivity in porous P2O5–SiO2 glasses, J. Phys. Chem. B 103 (1999) 9468–9472.

DOI: 10.1002/chin.200003007

Google Scholar

[16] A.K. Ladavosa, A.P. Katsoulidisb, A.Iosifidisc, K.S. Triantafyllidisd, T.J. Pinnavaiae, P.J. Pomonisc, The BET equation, the inflection points of N2 adsorption isotherms and the estimation of specific surface area of porous solids, Microporous and Mesoporous Materials, 151, (2012) 126-133.

DOI: 10.1016/j.micromeso.2011.11.005

Google Scholar

[17] J.E. Harlan, D. Picot., P.J. Loll., R.M. Garavito., Calibration of Size-Exclusion Chromatography: Use of a Double Gaussian Distribution Function to Describe Pore Sizes, Analytical Biochemistry, 224, (1995) 557–563.

DOI: 10.1006/abio.1995.1087

Google Scholar

[18] R. Defay, I. Prigogine, S. Bellemans, Surface Tension and Adsorption, Longmans, Green, London, 1966, chap. 16.

Google Scholar