New pH Correlations for Stainless Steel 316L, Alumina, and Copper(I) Oxide Nanofluids Fabricated at Controlled Sonication Temperatures

Article Preview

Abstract:

This research investigates the pH value of stainless steel (SS) 316L/ deionised water (DIW), alumina (Al2O3)/DIW, and copper (I) oxide (Cu2O)/DIW nanofluids prepared using a two-step controlled sonication temperature approach of 10°C to 60°C. The nanoparticles volumetric concentration of each family of as-prepared nanofluid ranged from 0.1 to 1.0 vol%, using as-received nanopowders, of 18 – 80 nm average particles size. Furthermore, the pH measuring apparatus and the measurement procedure were validated by determining the pH of commercially supplied calibration fluids, of pH 4, 7, and 10. Following the validation, pH correlations were obtained from the experimental measurements of the 0.1, 0.5, and 1.0 vol% nanofluids in terms of varied sonication bath temperatures and volumetric concentrations. Those correlations were then combined into one robust pHnf correlation and validated using the pH data of the 0.3 and 0.7 vol% nanofluids. The new proposed correlation was found to have a 2.18%, 0.92%, and 0.63%, average deviation from the experimental pH measurements of SS 316L, Al2O3, and Cu2O nanofluids, respectively, with an overall prediction accuracy of ~ 92%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-138

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ; Argonne National Lab., IL (United States), (1995).

Google Scholar

[2] P. Keblinski, J.A. Eastman, D.G. Cahill, Nanofluids for thermal transport, Materials Today, 8 (2005) 36-44.

DOI: 10.1016/s1369-7021(05)70936-6

Google Scholar

[3] C. Anushree, J. Philip, Assessment of long term stability of aqueous nanofluids using different experimental techniques, Journal of Molecular Liquids, 222 (2016) 350-358.

DOI: 10.1016/j.molliq.2016.07.051

Google Scholar

[4] S.U. Ilyas, R. Pendyala, A.S. Shuib, N. Marneni, A review on the viscous and thermal transport properties of nanofluids, in: International Conference on Process Engineering and Advanced Materials, ICPEAM 2012, Trans Tech Publications Ltd, Kuala Lumpur, 2014, pp.18-27.

DOI: 10.4028/www.scientific.net/amr.917.18

Google Scholar

[5] R. Shanthi, S.S. Anandan, V. Ramalingam, HEAT TRANSFER ENHANCEMENT USING NANOFLUIDS An Overview, Therm. Sci., 16 (2012) 423-444.

DOI: 10.2298/tsci110201003s

Google Scholar

[6] D.S. Wen, G.P. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications, Particuology, 7 (2009) 141-150.

DOI: 10.1016/j.partic.2009.01.007

Google Scholar

[7] L. Vekas, D. Bica, M.V. Avdeev, Magnetic nanoparticles and concentrated magnetic nanofluids: Synthesis, properties and some applications, China Particuology, 5 (2007) 43-49.

DOI: 10.1016/j.cpart.2007.01.015

Google Scholar

[8] K.S. Reddy, N.R. Kamnapure, S. Srivastava, Nanofluid and nanocomposite applications in solar energy conversion systems for performance enhancement: a review, Int. J. Low Carbon Technol., 12 (2017) 1-23.

DOI: 10.1093/ijlct/ctw007

Google Scholar

[9] M. Sheikholeslami, D.D. Ganji, Chapter 1 - Application of Nanofluids, in: M. Sheikholeslami, D.D. Ganji (Eds.) Applications of Semi Analytical Methods for Nanofluid Flow and Heat Transfer, Elsevier, 2018, pp.1-44.

DOI: 10.1016/b978-0-12-813675-1.00001-1

Google Scholar

[10] D. Mansoury, I.D. Faramarz, A. Kiani, A.J. Chamkha, M. Sharifpur, Heat transfer and flow characteristics of Al2O3/water nanofluid in various heat exchangers: Experiments on counter flow, Heat Transfer Eng, (2018) 1-36.

DOI: 10.1080/01457632.2018.1528051

Google Scholar

[11] A.J. Chamkha, M. Molana, A. Rahnama, F. Ghadami, On the nanofluids applications in microchannels: A comprehensive review, Powder Technol., 332 (2018) 287-322.

DOI: 10.1016/j.powtec.2018.03.044

Google Scholar

[12] S.U. Ilyas, R. Pendyala, N. Marneni, Stability and Agglomeration of Alumina Nanoparticles in Ethanol-Water Mixtures, in: M.A. Bustam, L.K. Keong, Z. Man, A.A. Hassankiadeh, Y.Y. Fong (Eds.) 4th International Conference on Process Engineering and Advanced Materials, ICPEAM 2016, Elsevier Ltd, 2016, pp.290-297.

DOI: 10.1016/j.proeng.2016.06.616

Google Scholar

[13] S.U. Ilyas, R. Pendyala, N. Marneni, Preparation, Sedimentation, and Agglomeration of Nanofluids, Chemical Engineering & Technology, 37 (2014) 2011-2021.

DOI: 10.1002/ceat.201400268

Google Scholar

[14] S. Mukherjee, P.C. Mishra, P. Chaudhuri, Stability of Heat Transfer Nanofluids – A Review, ChemBioEng Reviews, 5 (2018) 312-333.

DOI: 10.1002/cben.201800008

Google Scholar

[15] M.K. Bushehri, A. Mohebbi, H.H. Rafsanjani, Prediction of Thermal Conductivity and Viscosity of Nanofluids by Molecular Dynamics Simulation, J. Eng. Thermophys., 25 (2016) 389-400.

DOI: 10.1134/s1810232816030085

Google Scholar

[16] N. Ali, J.A. Teixeira, A. Addali, A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties, J. Nanomater., 2018 (2018) 33.

DOI: 10.1155/2018/6978130

Google Scholar

[17] J. Hong, D. Kim, Effects of aggregation on the thermal conductivity of alumina/water nanofluids, Thermochim Acta, 542 (2012) 28-32.

DOI: 10.1016/j.tca.2011.12.019

Google Scholar

[18] O. Arthur, M.A. Karim, An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications, Renewable & Sustainable Energy Reviews, 55 (2016) 739-755.

DOI: 10.1016/j.rser.2015.10.065

Google Scholar

[19] K.S. Suganthi, K.S. Rajan, Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance, Renewable & Sustainable Energy Reviews, 76 (2017) 226-255.

DOI: 10.1016/j.rser.2017.03.043

Google Scholar

[20] I.M. Mahbubul, E.B. Elcioglu, R. Saidur, M.A. Amalina, Optimization of ultrasonication period for better dispersion and stability of TiO2-water nanofluid, Ultrason Sonochem, 37 (2017) 360-367.

DOI: 10.1016/j.ultsonch.2017.01.024

Google Scholar

[21] P.K. Das, A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids, Journal of Molecular Liquids, 240 (2017) 420-446.

DOI: 10.1016/j.molliq.2017.05.071

Google Scholar

[22] X.F. Peng, X.L. Yu, L.F. Xia, X. Zhong, Influence factors on suspension stability of nanofluids, Zhejiang Daxue Xuebao (Gongxue Ban), 41 (2007) 577-580.

Google Scholar

[23] R. Choudhary, D. Khurana, A. Kumar, S. Subudhi, Stability analysis of Al2O3/water nanofluids, J. Exp. Nanosci., 12 (2017) 140-151.

Google Scholar

[24] H. Zhu, C. Zhang, Y. Tang, J. Wang, B. Ren, Y. Yin, Preparation and thermal conductivity of suspensions of graphite nanoparticles, (2007).

Google Scholar

[25] X. Li, D. Zhu, X. Wang, Evaluation on dispersion behavior of the aqueous copper nano-suspensions, J Colloid Interface Sci, 310 (2007) 456-463.

DOI: 10.1016/j.jcis.2007.02.067

Google Scholar

[26] E.B. Haghighi, N. Nikkam, M. Saleemi, M. Behi, S.A. Mirmohammadi, H. Poth, R. Khodabandeh, M.S. Toprak, M. Muhammed, B. Palm, Shelf stability of nanofluids and its effect on thermal conductivity and viscosity, Meas. Sci. Technol., 24 (2013).

DOI: 10.1088/0957-0233/24/10/105301

Google Scholar

[27] S. Askari, H. Koolivand, M. Pourkhalil, R. Lotfi, A. Rashidi, Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: Experimental approach, Int. Commun. Heat Mass Transf., 87 (2017) 30-39.

DOI: 10.1016/j.icheatmasstransfer.2017.06.012

Google Scholar

[28] M. Mohammadi, M. Dadvar, B. Dabir, TiO2/SiO2 nanofluids as novel inhibitors for the stability of asphaltene particles in crude oil: Mechanistic understanding, screening, modeling, and optimization, Journal of Molecular Liquids, 238 (2017) 326-340.

DOI: 10.1016/j.molliq.2017.05.014

Google Scholar

[29] K.Y. Leong, Z.A. Najwa, K.Z.K. Ahmad, H.C. Ong, Investigation on Stability and Optical Properties of Titanium Dioxide and Aluminum Oxide Water-Based Nanofluids, Int J Thermophys, 38 (2017).

DOI: 10.1007/s10765-017-2218-6

Google Scholar

[30] P.C.M. Kumar, M. Muruganandam, Stability Analysis of Heat Transfer MWCNT with Different Base Fluids, J. Appl. Fluid Mech., 10 (2017) 51-59.

Google Scholar

[31] A. Menbari, A.A. Alemrajabi, Y. Ghayeb, Investigation on the stability, viscosity and extinction coefficient of CuO-Al2O3/Water binary mixture nanofluid, Exp. Therm. Fluid Sci., 74 (2016) 122-129.

DOI: 10.1016/j.expthermflusci.2015.11.025

Google Scholar

[32] Y. Hwang, J.K. Lee, J.K. Lee, Y.M. Jeong, S.I. Cheong, Y.C. Ahn, S.H. Kim, Production and dispersion stability of nanoparticles in nanofluids, Powder Technol., 186 (2008) 145-153.

DOI: 10.1016/j.powtec.2007.11.020

Google Scholar

[33] W. Yu, H.Q. Xie, A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications, J. Nanomater., 2012 (2012).

Google Scholar

[34] X.J. Wang, D.S. Zhu, S. Yang, Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids, Chem. Phys. Lett., 470 (2009) 107-111.

DOI: 10.1016/j.cplett.2009.01.035

Google Scholar

[35] X.F. Li, D.S. Zhu, X.J. Wang, N. Wang, J.W. Gao, H. Li, Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids, Thermochim Acta, 469 (2008) 98-103.

DOI: 10.1016/j.tca.2008.01.008

Google Scholar

[36] S. Witharana, I. Palabiyik, Z. Musina, Y.L. Ding, Stability of glycol nanofluids - The theory and experiment, Powder Technol., 239 (2013) 72-77.

DOI: 10.1016/j.powtec.2013.01.039

Google Scholar

[37] J. Lee, K. Han, J. Koo, A novel method to evaluate dispersion stability of nanofluids, Int. J. Heat Mass Transf., 70 (2014) 421-429.

DOI: 10.1016/j.ijheatmasstransfer.2013.11.029

Google Scholar

[38] D.S. Zhu, X.F. Li, N. Wang, X.J. Wang, J.W. Gao, H. Li, Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids, Curr. Appl. Phys., 9 (2009) 131-139.

DOI: 10.1016/j.cap.2007.12.008

Google Scholar

[39] M. Modak, S.S. Chougule, S.K. Sahu, An Experimental Investigation on Heat Transfer Characteristics of Hot Surface by Using CuO-Water Nanofluids in Circular Jet Impingement Cooling, Journal of Heat Transfer-Transactions of the Asme, 140 (2018).

DOI: 10.1115/1.4037396

Google Scholar

[40] S. Manjula, S.M. Kumar, A.M. Raichur, G.M. Madhu, R. Suresh, M.A.L.A. Raj, A sedimentation study to optimize the dispersion of alumina nanoparticles in water, Cerâmica, 51 (2005) 121-127.

DOI: 10.1590/s0366-69132005000200009

Google Scholar

[41] S. Witharana, C. Hodges, D. Xu, X.J. Lai, Y.L. Ding, Aggregation and settling in aqueous polydisperse alumina nanoparticle suspensions, J. Nanopart. Res., 14 (2012).

DOI: 10.1007/s11051-012-0851-3

Google Scholar

[42] D. Lee, J.W. Kim, B.G. Kim, A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension, J Phys Chem B, 110 (2006) 4323-4328.

DOI: 10.1021/jp057225m

Google Scholar

[43] Y.Y. Song, H.K.D.H. Bhadeshia, D.W. Suh, Stability of stainless-steel nanoparticle and water mixtures, Powder Technol., 272 (2015) 34-44.

DOI: 10.1016/j.powtec.2014.11.026

Google Scholar

[44] N. Ali, J.A. Teixeira, A. Addali, F. Al-Zubi, E. Shaban, I. Behbehani, The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface, Applied Surface Science, 443 (2018) 24-30.

DOI: 10.1016/j.apsusc.2018.02.182

Google Scholar

[45] N. Ali, J.A. Teixeira, A. Addali, M. Saeed, F. Al-Zubi, A. Sedaghat, H. Bahzad, Deposition of Stainless Steel Thin Films: An Electron Beam Physical Vapour Deposition Approach, Materials, 12 (2019) 571.

DOI: 10.3390/ma12040571

Google Scholar

[46] S. Nanomaterials, Stainless Steel Nanoparticles/ Nanopowder, in, https://ssnano.com/inc/sdetail/stainless_steel_nanoparticles/2760, (2017).

Google Scholar

[47] Hach, User Manual - General use pH probe: Models PHC20101, PHC20103 (DOC022.53.80197), in, Hach Company, https://www.hach.com/asset-get.download.jsa?id =8027841104, (2013).

Google Scholar

[48] Hach, Application note - Temperature Compensation With pH Measurement in, Hach Company, https://www.hach.com/asset-get.download.jsa?id=17525673904, (2013).

Google Scholar

[49] I. US Research Nanomaterials, Copper(I) Oxide (Cuprous Oxide) Nanopowder / Cu2O Nanoparticles, in, (2017).

Google Scholar

[50] X.W. Ai, J.X. Lin, Y.F. Chang, L.Q. Zhou, X.M. Zhang, G.W. Qin, Phase modification of copper phthalocyanine semiconductor by converting powder to thin film, Applied Surface Science, 428 (2018) 788-792.

DOI: 10.1016/j.apsusc.2017.09.146

Google Scholar

[51] P.V. Raleaooa, A. Roodt, G.G. Mhlongo, D.E. Motaung, O.M. Ntwaeaborwa, Analysis of the structure, particle morphology and photoluminescent properties of ZnS:Mn2+ nanoparticulate phosphors, Optik, 153 (2018) 31-42.

DOI: 10.1016/j.ijleo.2017.09.120

Google Scholar

[52] M. Rabiee, H. Mirzadeh, A. Ataie, Processing of Cu-Fe and Cu-Fe-SiC nanocomposites by mechanical alloying, Adv Powder Technol, 28 (2017) 1882-1887.

DOI: 10.1016/j.apt.2017.04.023

Google Scholar

[53] S. Minaei, M. Haghighi, N. Jodeiri, H. Ajamein, M. Abdollahifar, Urea-nitrates combustion preparation of CeO2-promoted CuO/ZnO/Al2O3 nanocatalyst for fuel cell grade hydrogen production via methanol steam reforming, Adv Powder Technol, 28 (2017) 842-853.

DOI: 10.1016/j.apt.2016.12.010

Google Scholar

[54] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf., 11 (1998) 151-170.

DOI: 10.1080/08916159808946559

Google Scholar

[55] W.L. Marshall, E.U. Franck, Ion product of water substance, 0–1000 °C, 1–10,000 bars New International Formulation and its background, J. Phys. Chem. Ref. Data, 10 (1981) 295-304.

DOI: 10.1063/1.555643

Google Scholar