[1]
S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ; Argonne National Lab., IL (United States), (1995).
Google Scholar
[2]
P. Keblinski, J.A. Eastman, D.G. Cahill, Nanofluids for thermal transport, Materials Today, 8 (2005) 36-44.
DOI: 10.1016/s1369-7021(05)70936-6
Google Scholar
[3]
C. Anushree, J. Philip, Assessment of long term stability of aqueous nanofluids using different experimental techniques, Journal of Molecular Liquids, 222 (2016) 350-358.
DOI: 10.1016/j.molliq.2016.07.051
Google Scholar
[4]
S.U. Ilyas, R. Pendyala, A.S. Shuib, N. Marneni, A review on the viscous and thermal transport properties of nanofluids, in: International Conference on Process Engineering and Advanced Materials, ICPEAM 2012, Trans Tech Publications Ltd, Kuala Lumpur, 2014, pp.18-27.
DOI: 10.4028/www.scientific.net/amr.917.18
Google Scholar
[5]
R. Shanthi, S.S. Anandan, V. Ramalingam, HEAT TRANSFER ENHANCEMENT USING NANOFLUIDS An Overview, Therm. Sci., 16 (2012) 423-444.
DOI: 10.2298/tsci110201003s
Google Scholar
[6]
D.S. Wen, G.P. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications, Particuology, 7 (2009) 141-150.
DOI: 10.1016/j.partic.2009.01.007
Google Scholar
[7]
L. Vekas, D. Bica, M.V. Avdeev, Magnetic nanoparticles and concentrated magnetic nanofluids: Synthesis, properties and some applications, China Particuology, 5 (2007) 43-49.
DOI: 10.1016/j.cpart.2007.01.015
Google Scholar
[8]
K.S. Reddy, N.R. Kamnapure, S. Srivastava, Nanofluid and nanocomposite applications in solar energy conversion systems for performance enhancement: a review, Int. J. Low Carbon Technol., 12 (2017) 1-23.
DOI: 10.1093/ijlct/ctw007
Google Scholar
[9]
M. Sheikholeslami, D.D. Ganji, Chapter 1 - Application of Nanofluids, in: M. Sheikholeslami, D.D. Ganji (Eds.) Applications of Semi Analytical Methods for Nanofluid Flow and Heat Transfer, Elsevier, 2018, pp.1-44.
DOI: 10.1016/b978-0-12-813675-1.00001-1
Google Scholar
[10]
D. Mansoury, I.D. Faramarz, A. Kiani, A.J. Chamkha, M. Sharifpur, Heat transfer and flow characteristics of Al2O3/water nanofluid in various heat exchangers: Experiments on counter flow, Heat Transfer Eng, (2018) 1-36.
DOI: 10.1080/01457632.2018.1528051
Google Scholar
[11]
A.J. Chamkha, M. Molana, A. Rahnama, F. Ghadami, On the nanofluids applications in microchannels: A comprehensive review, Powder Technol., 332 (2018) 287-322.
DOI: 10.1016/j.powtec.2018.03.044
Google Scholar
[12]
S.U. Ilyas, R. Pendyala, N. Marneni, Stability and Agglomeration of Alumina Nanoparticles in Ethanol-Water Mixtures, in: M.A. Bustam, L.K. Keong, Z. Man, A.A. Hassankiadeh, Y.Y. Fong (Eds.) 4th International Conference on Process Engineering and Advanced Materials, ICPEAM 2016, Elsevier Ltd, 2016, pp.290-297.
DOI: 10.1016/j.proeng.2016.06.616
Google Scholar
[13]
S.U. Ilyas, R. Pendyala, N. Marneni, Preparation, Sedimentation, and Agglomeration of Nanofluids, Chemical Engineering & Technology, 37 (2014) 2011-2021.
DOI: 10.1002/ceat.201400268
Google Scholar
[14]
S. Mukherjee, P.C. Mishra, P. Chaudhuri, Stability of Heat Transfer Nanofluids – A Review, ChemBioEng Reviews, 5 (2018) 312-333.
DOI: 10.1002/cben.201800008
Google Scholar
[15]
M.K. Bushehri, A. Mohebbi, H.H. Rafsanjani, Prediction of Thermal Conductivity and Viscosity of Nanofluids by Molecular Dynamics Simulation, J. Eng. Thermophys., 25 (2016) 389-400.
DOI: 10.1134/s1810232816030085
Google Scholar
[16]
N. Ali, J.A. Teixeira, A. Addali, A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties, J. Nanomater., 2018 (2018) 33.
DOI: 10.1155/2018/6978130
Google Scholar
[17]
J. Hong, D. Kim, Effects of aggregation on the thermal conductivity of alumina/water nanofluids, Thermochim Acta, 542 (2012) 28-32.
DOI: 10.1016/j.tca.2011.12.019
Google Scholar
[18]
O. Arthur, M.A. Karim, An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications, Renewable & Sustainable Energy Reviews, 55 (2016) 739-755.
DOI: 10.1016/j.rser.2015.10.065
Google Scholar
[19]
K.S. Suganthi, K.S. Rajan, Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance, Renewable & Sustainable Energy Reviews, 76 (2017) 226-255.
DOI: 10.1016/j.rser.2017.03.043
Google Scholar
[20]
I.M. Mahbubul, E.B. Elcioglu, R. Saidur, M.A. Amalina, Optimization of ultrasonication period for better dispersion and stability of TiO2-water nanofluid, Ultrason Sonochem, 37 (2017) 360-367.
DOI: 10.1016/j.ultsonch.2017.01.024
Google Scholar
[21]
P.K. Das, A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids, Journal of Molecular Liquids, 240 (2017) 420-446.
DOI: 10.1016/j.molliq.2017.05.071
Google Scholar
[22]
X.F. Peng, X.L. Yu, L.F. Xia, X. Zhong, Influence factors on suspension stability of nanofluids, Zhejiang Daxue Xuebao (Gongxue Ban), 41 (2007) 577-580.
Google Scholar
[23]
R. Choudhary, D. Khurana, A. Kumar, S. Subudhi, Stability analysis of Al2O3/water nanofluids, J. Exp. Nanosci., 12 (2017) 140-151.
Google Scholar
[24]
H. Zhu, C. Zhang, Y. Tang, J. Wang, B. Ren, Y. Yin, Preparation and thermal conductivity of suspensions of graphite nanoparticles, (2007).
Google Scholar
[25]
X. Li, D. Zhu, X. Wang, Evaluation on dispersion behavior of the aqueous copper nano-suspensions, J Colloid Interface Sci, 310 (2007) 456-463.
DOI: 10.1016/j.jcis.2007.02.067
Google Scholar
[26]
E.B. Haghighi, N. Nikkam, M. Saleemi, M. Behi, S.A. Mirmohammadi, H. Poth, R. Khodabandeh, M.S. Toprak, M. Muhammed, B. Palm, Shelf stability of nanofluids and its effect on thermal conductivity and viscosity, Meas. Sci. Technol., 24 (2013).
DOI: 10.1088/0957-0233/24/10/105301
Google Scholar
[27]
S. Askari, H. Koolivand, M. Pourkhalil, R. Lotfi, A. Rashidi, Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: Experimental approach, Int. Commun. Heat Mass Transf., 87 (2017) 30-39.
DOI: 10.1016/j.icheatmasstransfer.2017.06.012
Google Scholar
[28]
M. Mohammadi, M. Dadvar, B. Dabir, TiO2/SiO2 nanofluids as novel inhibitors for the stability of asphaltene particles in crude oil: Mechanistic understanding, screening, modeling, and optimization, Journal of Molecular Liquids, 238 (2017) 326-340.
DOI: 10.1016/j.molliq.2017.05.014
Google Scholar
[29]
K.Y. Leong, Z.A. Najwa, K.Z.K. Ahmad, H.C. Ong, Investigation on Stability and Optical Properties of Titanium Dioxide and Aluminum Oxide Water-Based Nanofluids, Int J Thermophys, 38 (2017).
DOI: 10.1007/s10765-017-2218-6
Google Scholar
[30]
P.C.M. Kumar, M. Muruganandam, Stability Analysis of Heat Transfer MWCNT with Different Base Fluids, J. Appl. Fluid Mech., 10 (2017) 51-59.
Google Scholar
[31]
A. Menbari, A.A. Alemrajabi, Y. Ghayeb, Investigation on the stability, viscosity and extinction coefficient of CuO-Al2O3/Water binary mixture nanofluid, Exp. Therm. Fluid Sci., 74 (2016) 122-129.
DOI: 10.1016/j.expthermflusci.2015.11.025
Google Scholar
[32]
Y. Hwang, J.K. Lee, J.K. Lee, Y.M. Jeong, S.I. Cheong, Y.C. Ahn, S.H. Kim, Production and dispersion stability of nanoparticles in nanofluids, Powder Technol., 186 (2008) 145-153.
DOI: 10.1016/j.powtec.2007.11.020
Google Scholar
[33]
W. Yu, H.Q. Xie, A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications, J. Nanomater., 2012 (2012).
Google Scholar
[34]
X.J. Wang, D.S. Zhu, S. Yang, Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids, Chem. Phys. Lett., 470 (2009) 107-111.
DOI: 10.1016/j.cplett.2009.01.035
Google Scholar
[35]
X.F. Li, D.S. Zhu, X.J. Wang, N. Wang, J.W. Gao, H. Li, Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids, Thermochim Acta, 469 (2008) 98-103.
DOI: 10.1016/j.tca.2008.01.008
Google Scholar
[36]
S. Witharana, I. Palabiyik, Z. Musina, Y.L. Ding, Stability of glycol nanofluids - The theory and experiment, Powder Technol., 239 (2013) 72-77.
DOI: 10.1016/j.powtec.2013.01.039
Google Scholar
[37]
J. Lee, K. Han, J. Koo, A novel method to evaluate dispersion stability of nanofluids, Int. J. Heat Mass Transf., 70 (2014) 421-429.
DOI: 10.1016/j.ijheatmasstransfer.2013.11.029
Google Scholar
[38]
D.S. Zhu, X.F. Li, N. Wang, X.J. Wang, J.W. Gao, H. Li, Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids, Curr. Appl. Phys., 9 (2009) 131-139.
DOI: 10.1016/j.cap.2007.12.008
Google Scholar
[39]
M. Modak, S.S. Chougule, S.K. Sahu, An Experimental Investigation on Heat Transfer Characteristics of Hot Surface by Using CuO-Water Nanofluids in Circular Jet Impingement Cooling, Journal of Heat Transfer-Transactions of the Asme, 140 (2018).
DOI: 10.1115/1.4037396
Google Scholar
[40]
S. Manjula, S.M. Kumar, A.M. Raichur, G.M. Madhu, R. Suresh, M.A.L.A. Raj, A sedimentation study to optimize the dispersion of alumina nanoparticles in water, Cerâmica, 51 (2005) 121-127.
DOI: 10.1590/s0366-69132005000200009
Google Scholar
[41]
S. Witharana, C. Hodges, D. Xu, X.J. Lai, Y.L. Ding, Aggregation and settling in aqueous polydisperse alumina nanoparticle suspensions, J. Nanopart. Res., 14 (2012).
DOI: 10.1007/s11051-012-0851-3
Google Scholar
[42]
D. Lee, J.W. Kim, B.G. Kim, A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension, J Phys Chem B, 110 (2006) 4323-4328.
DOI: 10.1021/jp057225m
Google Scholar
[43]
Y.Y. Song, H.K.D.H. Bhadeshia, D.W. Suh, Stability of stainless-steel nanoparticle and water mixtures, Powder Technol., 272 (2015) 34-44.
DOI: 10.1016/j.powtec.2014.11.026
Google Scholar
[44]
N. Ali, J.A. Teixeira, A. Addali, F. Al-Zubi, E. Shaban, I. Behbehani, The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface, Applied Surface Science, 443 (2018) 24-30.
DOI: 10.1016/j.apsusc.2018.02.182
Google Scholar
[45]
N. Ali, J.A. Teixeira, A. Addali, M. Saeed, F. Al-Zubi, A. Sedaghat, H. Bahzad, Deposition of Stainless Steel Thin Films: An Electron Beam Physical Vapour Deposition Approach, Materials, 12 (2019) 571.
DOI: 10.3390/ma12040571
Google Scholar
[46]
S. Nanomaterials, Stainless Steel Nanoparticles/ Nanopowder, in, https://ssnano.com/inc/sdetail/stainless_steel_nanoparticles/2760, (2017).
Google Scholar
[47]
Hach, User Manual - General use pH probe: Models PHC20101, PHC20103 (DOC022.53.80197), in, Hach Company, https://www.hach.com/asset-get.download.jsa?id =8027841104, (2013).
Google Scholar
[48]
Hach, Application note - Temperature Compensation With pH Measurement in, Hach Company, https://www.hach.com/asset-get.download.jsa?id=17525673904, (2013).
Google Scholar
[49]
I. US Research Nanomaterials, Copper(I) Oxide (Cuprous Oxide) Nanopowder / Cu2O Nanoparticles, in, (2017).
Google Scholar
[50]
X.W. Ai, J.X. Lin, Y.F. Chang, L.Q. Zhou, X.M. Zhang, G.W. Qin, Phase modification of copper phthalocyanine semiconductor by converting powder to thin film, Applied Surface Science, 428 (2018) 788-792.
DOI: 10.1016/j.apsusc.2017.09.146
Google Scholar
[51]
P.V. Raleaooa, A. Roodt, G.G. Mhlongo, D.E. Motaung, O.M. Ntwaeaborwa, Analysis of the structure, particle morphology and photoluminescent properties of ZnS:Mn2+ nanoparticulate phosphors, Optik, 153 (2018) 31-42.
DOI: 10.1016/j.ijleo.2017.09.120
Google Scholar
[52]
M. Rabiee, H. Mirzadeh, A. Ataie, Processing of Cu-Fe and Cu-Fe-SiC nanocomposites by mechanical alloying, Adv Powder Technol, 28 (2017) 1882-1887.
DOI: 10.1016/j.apt.2017.04.023
Google Scholar
[53]
S. Minaei, M. Haghighi, N. Jodeiri, H. Ajamein, M. Abdollahifar, Urea-nitrates combustion preparation of CeO2-promoted CuO/ZnO/Al2O3 nanocatalyst for fuel cell grade hydrogen production via methanol steam reforming, Adv Powder Technol, 28 (2017) 842-853.
DOI: 10.1016/j.apt.2016.12.010
Google Scholar
[54]
B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf., 11 (1998) 151-170.
DOI: 10.1080/08916159808946559
Google Scholar
[55]
W.L. Marshall, E.U. Franck, Ion product of water substance, 0–1000 °C, 1–10,000 bars New International Formulation and its background, J. Phys. Chem. Ref. Data, 10 (1981) 295-304.
DOI: 10.1063/1.555643
Google Scholar