Facile Synthesis of Rod-Shaped Bi2S3 by Microwave Irradiation of Single Source Precursor

Article Preview

Abstract:

One-dimensional nanostructures have been the focus of recent research interests because they possess high aspect ratio. In this study, bismuth sulphide nanorods have been synthesized via a simple microwave irradiation of bismuth dithiocarbamate complex in ethylene glycol (EG) and N,N-dimethyl formamide (DMF) solvents. The optical properties of the nanorods was studied by UV-vis spectroscopy, and the structural characterization was carried out using powder X-ray diffraction (p-XRD) analysis, transmission electron microscopy (TEM, HRTEM), scanning electron microscopy (SEM), and selected area electron diffraction (SAED). The XRD patterns indicated cubic phase, and the TEM analysis confirmed rod-like morphology with mean diameter of about 60 nm and irregular lengths. The role of the solvents on the nanostructures was discussed, and the band gap energies were estimated from Tauc plot. The synthesized bismuth sulphide nanorods exhibited quantum confinement effect. The synthesis approach via microwave irradiation of single source precursor is facile and efficient, thus promotes the production of large scale Bi2S3 nanorods by an environmentally friendly approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-89

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Feilchenfeld, G. Chumanov, T.M. Cotton, Photoreduction of Methylviologen Adsorbed on Silver, J. Phys. Chem., 100 (1996) 4937 – 4943.

DOI: 10.1021/jp952329q

Google Scholar

[2] Z. Liu, J. Liang, S. Li, S. Peng, Y. Qian, Synthesis and Growth Mechanism of Bi2S3 Nanoribbons, Chem. Eur. J., 10 (2004) 634-640.

DOI: 10.1002/chem.200305481

Google Scholar

[3] J. Lu, Q. Han, X. Yang, L. Lu, X. Wang, Microwave-assisted synthesis and characterization of 3D flower-like Bi2S3 superstructures, Mater. Lett. 61 (2007) 2883-2886.

DOI: 10.1016/j.matlet.2007.01.071

Google Scholar

[4] S. Zhou, J. Li, Y. Ke, S. Lu, Synthesis of bismuth sulfide nanorods in acidic media at room temperature, Mater. Lett. 57 (2003) 2602-2605.

DOI: 10.1016/s0167-577x(02)01334-4

Google Scholar

[5] J. Chao, S. Xing, Y. Zhao, S. Gao, Q. Song, L. Guo, D. Wang, T. Zhang, Bismuth sulfide nanoflakes and nanorods as high performance photodetectors and photoelectrochemical cells, Solid State Sci. 61 (2016) 51-57.

DOI: 10.1016/j.solidstatesciences.2016.09.002

Google Scholar

[6] K. Biswas, L-D. Zhao, M. G. Kanatzidis, Tellurium-free thermoelectric: the anisotropic n-type semiconductor Bi2S3, Adv. Energy Mater. 2 (2012) 634-638.

DOI: 10.1002/aenm.201100775

Google Scholar

[7] W. N. Kun, S. Mlowe, L. D. Nyamen, M. P. Akerman, P. O'Briend, Peter T.Ndifon, N. Revaprasadu, Deposition of Bi2S3 thin films from heterocyclic bismuth(III) dithiocarbamato complexes, Polyhedron 154 (2018) 173-181.

DOI: 10.1016/j.poly.2018.07.055

Google Scholar

[8] D. B. Wang, M. W. Shao, D. B. Yu, G. P. Li, Y. T. Qian, Polyol-mediated preparation of Bi2S3 nanorods, J. Cryst. Growth 243 (2002) 331-335.

DOI: 10.1016/s0022-0248(02)01556-7

Google Scholar

[9] H. Zhang, L. Wang, Synthesis and characterization of Bi2S3 nanorods by solvothermal method in polyol media. Mater. Lett. 61 (2007) 1667-1670.

DOI: 10.1016/j.matlet.2006.07.095

Google Scholar

[10] X. Zhou, H. Shi, B. Zhang, X. Fu, K. Jiao. Facile synthesis and electrochemical application of surface-modified Bi2S3 urchin-like nano-spheres at room temperature, Mater. Lett. 62 (2008) 3201-3204.

DOI: 10.1016/j.matlet.2008.02.019

Google Scholar

[11] X-Y. Ma, L. Liu, W-L. Mo, H. Liu, H-Z. Kou, Y. Wang, Surfactant-assisted solvothermal synthesis of Bi2S3 nanorods, J. Cryst. Growth 306 (2007) 159-165.

DOI: 10.1016/j.jcrysgro.2007.03.062

Google Scholar

[12] C.J. Tang, G.Z. Wang, H.Q. Wang, Y.X. Zhang, G.H. Li, Facile synthesis of Bi2S3 nanowire arrays, Mater. Lett. 62 (2008) 3663-3665.

DOI: 10.1016/j.matlet.2008.04.021

Google Scholar

[13] T. Thongtem, A. Phuruangrat, S. Thongtem, Free surfactant synthesis of microcrystalline CdS by solvothermal reaction, Mater. Lett. 61 (2007) 3235-3238.

DOI: 10.1016/j.matlet.2006.11.040

Google Scholar

[14] G. Xing, Z. Feng, G. Chen, W. Yao, X. Song, Preparation of different morphologies of nanostructured bismuth sulfide with different methods, Mater. Lett. 57 (2003) 4555-4559.

DOI: 10.1016/s0167-577x(03)00361-6

Google Scholar

[15] Y.W. Koh, C. S. Lai, A. Y. Du, E. R. T. Tiekink, K. P. Loh, Growth of Bismuth Sulfide Nanowire Using Bismuth Trisxanthate Single Source Precursors, Chem. Mater. 15 (2003) 4544-4554.

DOI: 10.1021/cm021813k

Google Scholar

[16] P. Boudjouk, M. P. Remington, D. G. Grier, B. R. Jarabek, G. J. McCarthy, Tris(benzylthiolato)bismuth. Efficient Precursor to Phase-Pure Polycrystalline Bi2S3, Inorg. Chem. 37 (1998) 3538–3541.

DOI: 10.1021/ic971463h

Google Scholar

[17] N. H. Abdullah, Z. Zainal, S. Silong, M. I. M. Tahir, K-B. Tan, S-K. Chang, Thermal decomposition synthesis of nanorods bismuth sulphide from bismuth N-ethyl cyclohexyl dithiocarbamate complex, Thermochimica Acta 632 (2016) 37-45.

DOI: 10.1016/j.tca.2016.03.001

Google Scholar

[18] M. M. Mdleleni, T. Hyeon, K. S. Suslick, Sonochemical Synthesis of Nanostructured Molybdenum Sulfide, J. Am. Chem. Soc. 120 (1998) 6189–6190.

DOI: 10.1021/ja9800333

Google Scholar

[19] M-T. Liu, W. Li, Growth and optical property of PbS/ZnS nanocrystals, Superlatt. Microstruc. 120 (2018) 727–731.

DOI: 10.1016/j.spmi.2018.06.051

Google Scholar

[20] Y. Zhao, X-H. Liao, J-M. Hong, J-J. Zhu, Synthesis of lead sulfide nanocrystals via microwave and sonochemical methods, Mater. Chem. Phys. 87 (2004) 149–153.

DOI: 10.1016/j.matchemphys.2004.05.026

Google Scholar

[21] F.F. Bobinihi, J. Osuntokun, D. C. Onwudiwe, Syntheses and characterization of nickel(II) dithiocarbamate complexes containing NiS4 and NiS2PN moieties: Nickel sulphide nanoparticles from a single source precursor, J. Saudi Chem. Soc. 22 (2018) 381–395.

DOI: 10.1016/j.jscs.2017.10.001

Google Scholar

[22] R. Y. Pelgrift, A.J. Friedman, Nanotechnology as a therapeutic tool to combat microbial resistance, Adv. Drug Deliv. Rev. 65 (2013) 1803 - 1815.

DOI: 10.1016/j.addr.2013.07.011

Google Scholar

[23] B. Arul Prakasam, K. Ramalingam, G. Bocelli, A. Cantoni, NMR and fluorescence spectral studies on bisdithiocarbamates of divalent Zn, Cd and their nitrogenous adducts: Single crystal X-ray structure of (1,10-phenanthroline)bis(4-methylpiperazinecarbodithioato) zinc(II), Polyhedron 26 (2007) 4489 – 4493.

DOI: 10.1016/j.poly.2007.06.008

Google Scholar

[24] Powder Diffract. File, JCPDS-ICDD, Newtown Square, PA, USA, (2001).

Google Scholar

[25] M. Salavati-Niasari, D. Ghanbari, F. Davar, Synthesis of different morphologies of bismuth sulfide nanostructures via hydrothermal process in the presence of thioglycolic acid, J. Alloys Compds. 488 (2009) 442-447.

DOI: 10.1016/j.jallcom.2009.08.152

Google Scholar

[26] C. Martínez-Alonso, E.U. Olivos-Peralta, M. Sotelo-Lerma, R.Y. Sato-Berrú, S. A. Mayen-Hernandez, H. Hu, Purity and crystallinity of microwave synthesized antimony sulfide microrods, Mater. Chem. Phys. 186 (2017) 390-398.

DOI: 10.1016/j.matchemphys.2016.11.010

Google Scholar

[27] E. B. Díaz-Cruz, O. A. Castelo-González, C. Martínez-Alonso, Z. Montiel-González, M. C. Arenas-Arrocenad, H. Hua, Morphology control in microwave synthesized bismuth sulfide by using different bismuth salts, Mater. Sci. Semicond. Proc. 75 (2018) 311-318.

DOI: 10.1016/j.mssp.2017.10.042

Google Scholar

[28] D. Wang, C. Hao, W. Zheng, X. Ma, D. Chu, Q. Peng, Y. Li, Bi2S3 Nanotubes: Facile Synthesis and Growth Mechanism, Nano Res. 2 (2009) 130 -134.

DOI: 10.1007/s12274-009-9010-2

Google Scholar

[29] V.V. Killedar, S.N. Katore, C.H. Bhosale, Preparation and characterization of electrodeposited Bi2S3 thin films prepared from non-aqueous media, Mater. Chem. Phys. 64 (2000) 166-169.

DOI: 10.1016/s0254-0584(99)00259-x

Google Scholar

[30] P. Han, A. Mihi, J. Ferre-borrull, J. Pallarés, and L. F. Marsal, Interplay Between Morphology, Optical Properties, and Electronic Structure of Solution-Processed Bi2S3 Colloidal Nanocrystals, J. Phys. Chem. C 119 (2015) 10693–10699.

DOI: 10.1021/acs.jpcc.5b01305

Google Scholar

[31] Y. Xu, Z. Ren, G. Cao, W. Ren, K. Deng, Y. Zhong, A template-free route to prepare Bi2S3 nanostructures, Physica B 405 (2010) 1353-1358.

DOI: 10.1016/j.physb.2009.11.088

Google Scholar

[32] W. Li, Synthesis and characterization of bismuth sulfide nanowires through microwave solvothermal technique, Mater. Lett. 62 (2008) 243-245.

DOI: 10.1016/j.matlet.2007.05.007

Google Scholar