[1]
J. Sun, P. Li, R. Gao, X. Lu, C. Li, Y. Lang, X. Zhang, J. Bian, Piezo-phototronic effect enhanced photo-detector based on ZnO nano-arrays/NiO structure, Appl. Surf. Sci., 427 (2018) 613–619.
DOI: 10.1016/j.apsusc.2017.09.023
Google Scholar
[2]
P. Kolhe, A. Shinde, S. Kulkarni, N. Maiti, P. Koinkar, K. Sonawane, Gas sensing performance of Al doped ZnO thin film for H2S detection, J. Alloy. Compd., 748 (2018) 6-11.
DOI: 10.1016/j.jallcom.2018.03.123
Google Scholar
[3]
A. Preston, R. Hughes, T. Demille, S. Neretina, Copper template design for the synthesis of bimetallic copper, Part. Part. Syst. Charact., 1700420 (2018) 1-8.
DOI: 10.1002/ppsc.201700420
Google Scholar
[4]
X. Xiong, C. You, Z. Liu, A. Asiri, X. Sun, Co-doped CuO nanoarray: an efficient oxygen evolution reaction electrocatalyst with enhanced activity, ACS Sustainable Chem. Eng., 6 (2018) 2883−2887.
DOI: 10.1021/acssuschemeng.7b03752
Google Scholar
[5]
C. Guillen, J. Herrero, Single-phase Cu2O and CuO thin films obtained by low-temperature oxidation processes, J. Alloy. Compd., 737 (2018) 718-724.
DOI: 10.1016/j.jallcom.2017.12.174
Google Scholar
[6]
D. Murali, S. Aryasomayajula, Thermal conversion of Cu4O3 Into CuO and Cu2O and the electrical properties of magnetron sputtered Cu4O3 thin films, Appl. Phys. A., 124:279 (2018) 1-7.
DOI: 10.1007/s00339-018-1666-6
Google Scholar
[7]
R. Prabua, S. Valanarasua, V. Ganesh, M. Shkir, S. AlFaify, A. Kathalingam, S. Srikumare, R. Chandramohan, An effect of temperature on structural, optical, photoluminescence and electrical properties of copper oxide thin films deposited by nebulizer spray pyrolysis technique, Mater. Sci. Semicond. Process., 74 (2018) 129-135.
DOI: 10.1016/j.mssp.2017.10.023
Google Scholar
[8]
D. Murali, S. Kumar, R. Choudhary, A. Wadikar, M. Jain, A. Subrahmanyam, Synthesis of Cu2O from CuO thin films: Optical and electrical properties, AIP ADVANCES, 5:047143 (2015) 1-5.
DOI: 10.1063/1.4919323
Google Scholar
[9]
M. Harilal, S. Krishnan, B. Pal, M. Reddy, M. Rahim, M. Yusoff, R. Jose, Environment-Modulated Crystallization of Cu2O and CuO Nanowires by Electrospinning and Their Charge Storage Properties, Langmuir, 34 (2018) 1873-1882.
DOI: 10.1021/acs.langmuir.7b03576
Google Scholar
[10]
K. Bergum, H. Riise, S. Gorantla, P. Lindberg, I. Jensen, A. Gunnæs, A. Galeckas, S. Diplas, B. Svensson, E. Monakhov, Improving carrier transport in Cu2O thin films by rapid thermal annealing, J. Phys.: Condens. Matter., 30: 075702 (2018) 1-9.
DOI: 10.1088/1361-648x/aaa5f4
Google Scholar
[11]
D. Osorio-Rivera, G. Torres-Delgado,0 J. Marquez-Marin, R. Castanedo-Perez, M. A. Aguilar-Frutis, O. Zelaya-Angel, Cuprous oxide thin films obtained by spray-pyrolysis technique, J Mater Sci: Mater Electron, 29 (2018) 851-857.
DOI: 10.1007/s10854-017-7980-5
Google Scholar
[12]
S. Ishizuka, T. Maruyama, and K. Akimoto, Thin-Film Deposition of Cu2O by Reactive Radio-Frequency Magnetron Sputtering, Jpn. J. Appl. Phys., 39 (2000) 786-788.
DOI: 10.1143/jjap.39.l786
Google Scholar
[13]
M. Nair, L. Guerrero, O. Arenas, P.K. Nair, Chemically deposited copper oxide thin films: structural, optical and electrical characteristics, Appl. Surf. Sci., 150 (1999) 143-151.
DOI: 10.1016/s0169-4332(99)00239-1
Google Scholar
[14]
R. Bai, S. Chaudhary, D. Pandya, Temperature dependent charge transport mechanisms in highly crystalline p-PbS cubic nanocrystals grown by chemical bath deposition, Mater. Sci. Semicond. Process., 75 (2018) 301-310.
DOI: 10.1016/j.mssp.2017.12.003
Google Scholar
[15]
M. Ahmeda, B. Mwankemwaa, E. Carleschi, B. Doyle, W.E. Meyer, J.M. Nel, Effect of Sm doping ZnO nanorods on structural optical and electrical properties of Schottky diodes prepared by chemical bath deposition, Mater. Sci. Semicond. Process., 79 (2018) 53-60.
DOI: 10.1016/j.mssp.2018.02.003
Google Scholar
[16]
K. Kardarian, D. Nunes, P. Sberna, A. Ginsburg, D. Keller, J. Pinto, J. Deuermeier, A. Anderson, A. Zaban, R. Martins, E. Fortunato, Effect of Mg doping on Cu2O thin films and their behavior on theTiO2/Cu2O heterojunction solar cells, Sol. Energy Mater. Sol. Cells, 147 (2016) 27-36.
DOI: 10.1016/j.solmat.2015.11.041
Google Scholar
[17]
N. Kikuchi, K. Tonooka, Electrical and structural properties of Ni-doped Cu2O films prepared by pulsed laser deposition, Thin Solid Films, 486 (2015) 33-37.
DOI: 10.1016/j.tsf.2004.12.044
Google Scholar
[18]
I.Y. Bouderbala, A. Herbadji, L. Mentar, A. Azizi, Optical, structural, and photoelectrochemical properties of nanostructured Cl-doped Cu2O via electrochemical deposition, Sol. State Sci., 83 (2018) 161-170.
DOI: 10.1016/j.solidstatesciences.2018.07.015
Google Scholar
[19]
J. Zhong-Qian, Y. Gang, A. Xin-You, F. Ya-Jun, C. Lin-Hong, W. Wei-Dong, W. Xue-Min, Electronic and optical properties of Au-doped Cu2O: A first principles investigation, Chin. Phys. B, 23: 057104 (2014) 1-8.
Google Scholar
[20]
J. Wu, K. S. Hui, K. N. Hui, L. Li, H. Chun, Y. R. Cho, Characterization of Sn-doped CuO thin films prepared by a sol–gel method, J. Mater. Sci.: Mater Electron, 27 (2016) 1719–1724.
DOI: 10.1007/s10854-015-3945-8
Google Scholar
[21]
K. Subha, K. Ravichandrana, S. Sriram, Combined influence of fluorine doping and vacuum annealing on the electrical properties of ZnO:Ta films, Appl. Surf. Sci., 409 (2017) 413–425.
DOI: 10.1016/j.apsusc.2017.02.233
Google Scholar
[22]
R. Prabua, S. Valanarasua, V. Ganesh, M. Shkir, S. AlFaify, A. Kathalingam, S. Srikumare, R. Chandramohan, An effect of temperature on structural, optical, photoluminescence and electrical properties of copper oxide thin films deposited by nebulizer spray pyrolysis technique, Mater. Sci. Semicond. Process., 74 (2018) 129–135.
DOI: 10.1016/j.mssp.2017.10.023
Google Scholar
[23]
P. Chand, P. Kumar, Effect of precursors medium on structural, optical and dielectric properties of CuO nanostructures, Optik, 156 (2018) 743–753.
DOI: 10.1016/j.ijleo.2017.12.029
Google Scholar
[24]
K. Kumar, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, Nd3+ Doping effect on the optical and electrical properties of SnO2 thin films prepared by nebulizer spray pyrolysis for opto-electronic application, Mater. Res. Bull., 101 (2018) 264–271.
DOI: 10.1016/j.materresbull.2018.01.050
Google Scholar
[25]
M. Shkir, V. Ganesh, S. AlFaify, I. Yahia, H. Zahran, Tailoring the linear and nonlinear optical properties of NiO thin films through Cr3+ doping, J. Mater. Sci.: Mater. Electron., 29 (2018) 6446-6457.
DOI: 10.1007/s10854-018-8626-y
Google Scholar
[26]
E. Güneri, A. Kariper, Characterization of high quality chalcogenide thin film fabricated by chemical bath deposition, Electron. Mater. Lett., 9(1) (2018) 13-17.
DOI: 10.1007/s13391-012-2099-6
Google Scholar
[27]
F. Biccari, Defects and doping in Cu2O, Ph.D. diss. Sapienza University (2010).
Google Scholar
[28]
M. Shabbir, S. Bashir, Q. Ahmed, N. Yaseen, S. Jalil, M. Akram, K. Mahmood, A. Khalid, Effect of Substrate Temperature on The Growth of Copper Oxide Thin Films Deposited By Pulsed Laser Deposıtıon Technique, Surf. Rev. Lett., 25(2) (2018) 1850053-14.
DOI: 10.1142/s0218625x18500531
Google Scholar
[29]
Y. Akaltun, Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction, Thin Solid Films, 594 (2015) 30–34.
DOI: 10.1016/j.tsf.2015.10.003
Google Scholar
[30]
A. Hastir, R. Opila, N. Kohli, Z. Onuk, B. Yuan, K. Jones, V. Singh, Deposition, characterization and gas sensors application of RF magnetron-sputtered terbium-doped ZnO films, J. Mater. Sci., 52 (2018) 8502-8517.
DOI: 10.1007/s10853-017-1059-9
Google Scholar
[31]
N.M. Ravindra, Preethi Ganapathy, Jinsoo Choi, Energy gap–refractive index relations in semiconductors – An overview, Infrared Phys. Technol., 50 (2007) 21–29.
DOI: 10.1016/j.infrared.2006.04.001
Google Scholar
[32]
V. Dhanasekaran, T. Mahalingam, R. Chandramohan, J. Rhee, J.P. Chu, Electrochemical deposition and characterization of cupric oxide thin films, Thin Solid Films, 520 (2018) 6608-6613.
DOI: 10.1016/j.tsf.2012.07.021
Google Scholar
[33]
N. Habubi, S. Oboudi, S. Chiad, Study of some optical properties of mixed SnO2-CuO thin films. J. Nano- Electron. Phys., 4(04008) (2018) 4.
Google Scholar