The Role of Au Doping on the Structural and Optical Properties of Cu2O Films

Article Preview

Abstract:

The changes in structural and optical properties of the Cu2O films obtained on the glass with different concentrations of Au by the chemical bath method were studied in this work. Lattice parameter, crystal size, preferential orientation and surface tension of the films were calculated using X-ray diffraction data which showed that all of the films were in polycrystalline form. It was determined that the structural parameters of all films were changed with the doping ratio. The surface morphology of the films was imaged using a field emission scanning electron microscope. The optical properties of the films were discovered using the optic spectrometer. Changes in the optical properties were discovered as a function of Au ratio. It was determined that the energy band gap value (2.12 eV-2.02 eV), the refractive index, the extinction coefficient, the real and dielectric coefficients, the optical conductivity, and the skin depth of films varied with Au doping ratio.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-67

Citation:

Online since:

June 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Sun, P. Li, R. Gao, X. Lu, C. Li, Y. Lang, X. Zhang, J. Bian, Piezo-phototronic effect enhanced photo-detector based on ZnO nano-arrays/NiO structure, Appl. Surf. Sci., 427 (2018) 613–619.

DOI: 10.1016/j.apsusc.2017.09.023

Google Scholar

[2] P. Kolhe, A. Shinde, S. Kulkarni, N. Maiti, P. Koinkar, K. Sonawane, Gas sensing performance of Al doped ZnO thin film for H2S detection, J. Alloy. Compd., 748 (2018) 6-11.

DOI: 10.1016/j.jallcom.2018.03.123

Google Scholar

[3] A. Preston, R. Hughes, T. Demille, S. Neretina, Copper template design for the synthesis of bimetallic copper, Part. Part. Syst. Charact., 1700420 (2018) 1-8.

DOI: 10.1002/ppsc.201700420

Google Scholar

[4] X. Xiong, C. You, Z. Liu, A. Asiri, X. Sun, Co-doped CuO nanoarray: an efficient oxygen evolution reaction electrocatalyst with enhanced activity, ACS Sustainable Chem. Eng., 6 (2018) 2883−2887.

DOI: 10.1021/acssuschemeng.7b03752

Google Scholar

[5] C. Guillen, J. Herrero, Single-phase Cu2O and CuO thin films obtained by low-temperature oxidation processes, J. Alloy. Compd., 737 (2018) 718-724.

DOI: 10.1016/j.jallcom.2017.12.174

Google Scholar

[6] D. Murali, S. Aryasomayajula, Thermal conversion of Cu4O3 Into CuO and Cu2O and the electrical properties of magnetron sputtered Cu4O3 thin films, Appl. Phys. A., 124:279 (2018) 1-7.

DOI: 10.1007/s00339-018-1666-6

Google Scholar

[7] R. Prabua, S. Valanarasua, V. Ganesh, M. Shkir, S. AlFaify, A. Kathalingam, S. Srikumare, R. Chandramohan, An effect of temperature on structural, optical, photoluminescence and electrical properties of copper oxide thin films deposited by nebulizer spray pyrolysis technique, Mater. Sci. Semicond. Process., 74 (2018) 129-135.

DOI: 10.1016/j.mssp.2017.10.023

Google Scholar

[8] D. Murali, S. Kumar, R. Choudhary, A. Wadikar, M. Jain, A. Subrahmanyam, Synthesis of Cu2O from CuO thin films: Optical and electrical properties, AIP ADVANCES, 5:047143 (2015) 1-5.

DOI: 10.1063/1.4919323

Google Scholar

[9] M. Harilal, S. Krishnan, B. Pal, M. Reddy, M. Rahim, M. Yusoff, R. Jose, Environment-Modulated Crystallization of Cu2O and CuO Nanowires by Electrospinning and Their Charge Storage Properties, Langmuir, 34 (2018) 1873-1882.

DOI: 10.1021/acs.langmuir.7b03576

Google Scholar

[10] K. Bergum, H. Riise, S. Gorantla, P. Lindberg, I. Jensen, A. Gunnæs, A. Galeckas, S. Diplas, B. Svensson, E. Monakhov, Improving carrier transport in Cu2O thin films by rapid thermal annealing, J. Phys.: Condens. Matter., 30: 075702 (2018) 1-9.

DOI: 10.1088/1361-648x/aaa5f4

Google Scholar

[11] D. Osorio-Rivera, G. Torres-Delgado,0 J. Marquez-Marin, R. Castanedo-Perez, M. A. Aguilar-Frutis, O. Zelaya-Angel, Cuprous oxide thin films obtained by spray-pyrolysis technique, J Mater Sci: Mater Electron, 29 (2018) 851-857.

DOI: 10.1007/s10854-017-7980-5

Google Scholar

[12] S. Ishizuka, T. Maruyama, and K. Akimoto, Thin-Film Deposition of Cu2O by Reactive Radio-Frequency Magnetron Sputtering, Jpn. J. Appl. Phys., 39 (2000) 786-788.

DOI: 10.1143/jjap.39.l786

Google Scholar

[13] M. Nair, L. Guerrero, O. Arenas, P.K. Nair, Chemically deposited copper oxide thin films: structural, optical and electrical characteristics, Appl. Surf. Sci., 150 (1999) 143-151.

DOI: 10.1016/s0169-4332(99)00239-1

Google Scholar

[14] R. Bai, S. Chaudhary, D. Pandya, Temperature dependent charge transport mechanisms in highly crystalline p-PbS cubic nanocrystals grown by chemical bath deposition, Mater. Sci. Semicond. Process., 75 (2018) 301-310.

DOI: 10.1016/j.mssp.2017.12.003

Google Scholar

[15] M. Ahmeda, B. Mwankemwaa, E. Carleschi, B. Doyle, W.E. Meyer, J.M. Nel, Effect of Sm doping ZnO nanorods on structural optical and electrical properties of Schottky diodes prepared by chemical bath deposition, Mater. Sci. Semicond. Process., 79 (2018) 53-60.

DOI: 10.1016/j.mssp.2018.02.003

Google Scholar

[16] K. Kardarian, D. Nunes, P. Sberna, A. Ginsburg, D. Keller, J. Pinto, J. Deuermeier, A. Anderson, A. Zaban, R. Martins, E. Fortunato, Effect of Mg doping on Cu2O thin films and their behavior on theTiO2/Cu2O heterojunction solar cells, Sol. Energy Mater. Sol. Cells, 147 (2016) 27-36.

DOI: 10.1016/j.solmat.2015.11.041

Google Scholar

[17] N. Kikuchi, K. Tonooka, Electrical and structural properties of Ni-doped Cu2O films prepared by pulsed laser deposition, Thin Solid Films, 486 (2015) 33-37.

DOI: 10.1016/j.tsf.2004.12.044

Google Scholar

[18] I.Y. Bouderbala, A. Herbadji, L. Mentar, A. Azizi, Optical, structural, and photoelectrochemical properties of nanostructured Cl-doped Cu2O via electrochemical deposition, Sol. State Sci., 83 (2018) 161-170.

DOI: 10.1016/j.solidstatesciences.2018.07.015

Google Scholar

[19] J. Zhong-Qian, Y. Gang, A. Xin-You, F. Ya-Jun, C. Lin-Hong, W. Wei-Dong, W. Xue-Min, Electronic and optical properties of Au-doped Cu2O: A first principles investigation, Chin. Phys. B, 23: 057104 (2014) 1-8.

Google Scholar

[20] J. Wu, K. S. Hui, K. N. Hui, L. Li, H. Chun, Y. R. Cho, Characterization of Sn-doped CuO thin films prepared by a sol–gel method, J. Mater. Sci.: Mater Electron, 27 (2016) 1719–1724.

DOI: 10.1007/s10854-015-3945-8

Google Scholar

[21] K. Subha, K. Ravichandrana, S. Sriram, Combined influence of fluorine doping and vacuum annealing on the electrical properties of ZnO:Ta films, Appl. Surf. Sci., 409 (2017) 413–425.

DOI: 10.1016/j.apsusc.2017.02.233

Google Scholar

[22] R. Prabua, S. Valanarasua, V. Ganesh, M. Shkir, S. AlFaify, A. Kathalingam, S. Srikumare, R. Chandramohan, An effect of temperature on structural, optical, photoluminescence and electrical properties of copper oxide thin films deposited by nebulizer spray pyrolysis technique, Mater. Sci. Semicond. Process., 74 (2018) 129–135.

DOI: 10.1016/j.mssp.2017.10.023

Google Scholar

[23] P. Chand, P. Kumar, Effect of precursors medium on structural, optical and dielectric properties of CuO nanostructures, Optik, 156 (2018) 743–753.

DOI: 10.1016/j.ijleo.2017.12.029

Google Scholar

[24] K. Kumar, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, Nd3+ Doping effect on the optical and electrical properties of SnO2 thin films prepared by nebulizer spray pyrolysis for opto-electronic application, Mater. Res. Bull., 101 (2018) 264–271.

DOI: 10.1016/j.materresbull.2018.01.050

Google Scholar

[25] M. Shkir, V. Ganesh, S. AlFaify, I. Yahia, H. Zahran, Tailoring the linear and nonlinear optical properties of NiO thin films through Cr3+ doping, J. Mater. Sci.: Mater. Electron., 29 (2018) 6446-6457.

DOI: 10.1007/s10854-018-8626-y

Google Scholar

[26] E. Güneri, A. Kariper, Characterization of high quality chalcogenide thin film fabricated by chemical bath deposition, Electron. Mater. Lett., 9(1) (2018) 13-17.

DOI: 10.1007/s13391-012-2099-6

Google Scholar

[27] F. Biccari, Defects and doping in Cu2O, Ph.D. diss. Sapienza University (2010).

Google Scholar

[28] M. Shabbir, S. Bashir, Q. Ahmed, N. Yaseen, S. Jalil, M. Akram, K. Mahmood, A. Khalid, Effect of Substrate Temperature on The Growth of Copper Oxide Thin Films Deposited By Pulsed Laser Deposıtıon Technique, Surf. Rev. Lett., 25(2) (2018) 1850053-14.

DOI: 10.1142/s0218625x18500531

Google Scholar

[29] Y. Akaltun, Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction, Thin Solid Films, 594 (2015) 30–34.

DOI: 10.1016/j.tsf.2015.10.003

Google Scholar

[30] A. Hastir, R. Opila, N. Kohli, Z. Onuk, B. Yuan, K. Jones, V. Singh, Deposition, characterization and gas sensors application of RF magnetron-sputtered terbium-doped ZnO films, J. Mater. Sci., 52 (2018) 8502-8517.

DOI: 10.1007/s10853-017-1059-9

Google Scholar

[31] N.M. Ravindra, Preethi Ganapathy, Jinsoo Choi, Energy gap–refractive index relations in semiconductors – An overview, Infrared Phys. Technol., 50 (2007) 21–29.

DOI: 10.1016/j.infrared.2006.04.001

Google Scholar

[32] V. Dhanasekaran, T. Mahalingam, R. Chandramohan, J. Rhee, J.P. Chu, Electrochemical deposition and characterization of cupric oxide thin films, Thin Solid Films, 520 (2018) 6608-6613.

DOI: 10.1016/j.tsf.2012.07.021

Google Scholar

[33] N. Habubi, S. Oboudi, S. Chiad, Study of some optical properties of mixed SnO2-CuO thin films. J. Nano- Electron. Phys., 4(04008) (2018) 4.

Google Scholar