Investigation of Microstructural and Optical Properties of Ag3O4 Thin Films Sprayed onto Glass Substrate

Article Preview

Abstract:

In the present work we studied the effect of temperature and molarity on microstructural and optical properties of Ag3O4 thin films deposited by spray pyrolysis. Transparent conductive thin films of silver oxide (Ag3O4) were prepared by using an aqueous solution of silver nitrate (AgNO3) and sprayed onto heated soda glass substrate at 350 °C and annealed at 550°C. X-ray diffraction showed that the films have a monoclinic structure with a preferential orientation along the (031) direction. A visible shift of the main peak as a function of temperature and solution molarity is observed. The lattice parameters a, b and c are estimated to be 3.68, 9.30 and 5.20Ǻ respectively. Scanning Electron Microscopy (SEM) analysis shows that all films are nanostructured and homogeneous with dense surfaces. Transmittance and reflectance measurements are performed in the spectral range 200-1600 nm and yielded a band gap energy (Eg) varying in the range 3.07-3.25 eV. Refractive index was studied in terms of Moss, Ravindra and Herve–Vandamme models. The optical constants such as the oscillator energy (E0), static refractive index (n0), dispersion energy (Ed) and dielectric parameters (εr ) of the films were derived from the analysis and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-101

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bielmann, P. Schwaller, P. Ruffieux, O. Gr¨oning, L. Schlapbach, and P. Gr¨oning, AgO investigated by photoelectron spectroscopy: evidence for mixed valence,, Physical Review B, vol. 65, no. 23, (2002) 235431-235435.

DOI: 10.1103/physrevb.65.235431

Google Scholar

[2] J.A. McMillan Magnetic properties and crystalline structure of AgO, Journal of Inorganic and Nuclear Chemistry, Volume 13, Issues 1–2, April 1960, Pages 28-31.

DOI: 10.1016/0022-1902(60)80231-x

Google Scholar

[3] B. Standke, M. Jansen, J. Solid State Chem. Inorganic Syntheses: Nonmolecular Solids 67 (1987) 278.

Google Scholar

[4] B. Standke, M. Jansen: Ag3O4, das erste Silber (II, III)-oxid , Angew. Chem. 98 (1986) 76- 90.

DOI: 10.1002/ange.19860980107

Google Scholar

[5] C. Karunakaran, V. Rajeswari, P. Gomathisankar, Optical, electrical,photocatalytic, and bactericidal properties of microwave synthesizednanocrystalline Ag ZnO and ZnO, Solid State Sci. 13 (2011) 923–928.

DOI: 10.1016/j.solidstatesciences.2011.02.016

Google Scholar

[6] B. Subash, A. Senthilraja, P. Dhatshanamurthi, M. Swaminathan, M. Shanthi,Solar active photocatalyst for effective degradation of RR 120 with dyesensitized mechanism, Spectrochim. Acta A 115 (2013) 175-182.

DOI: 10.1016/j.saa.2013.06.027

Google Scholar

[7] E.I. Alarcon, K. Udekwu, M. Skog, N.L. Pacioni, K.G. Stamplecoskie, M.González-Béjar, N. Polisetti, A. Wickham, A. Richter-Dahlfors, M. Griffith, J.C. Scaiano, The biocompatibility and antibacterial properties ofcollagen-stabilized, photochemically prepared silver nanoparticles, Biomaterials 33 (19) (2012) 4947-4956.

DOI: 10.1016/j.biomaterials.2012.03.033

Google Scholar

[8] Ju-Mei Li, Wan-Fu Ma, Chuan Wei, Li-Jun You, Jia Guo, Jun Hu, Chang-ChunWang, Detecting trace melamine in solution by SERS using Ag nanoparticlecoated poly (styrene-co-acrylic acid) nanospheres as novel active substrates, Langmuir 27 (23) (2011) 14539- 14544.

DOI: 10.1021/la203049k

Google Scholar

[9] X. Zheng, X. Zhao, D. Guo, B. Tang, S. Xu, B. Zhao, W. Xu, Photochemicalformation of silver nanodecahedra: structural selection by the excitationwavelength, Langmuir 25 (2009) 3802-3807.

DOI: 10.1021/la803814j

Google Scholar

[10] P.P. Sahay, R.K. Nath, "Al-Doped ZnO Thin Films as Methanol Sensors, Sens. Actuators B134 (2008) 654–659.

DOI: 10.1016/j.snb.2008.06.006

Google Scholar

[11] B.G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles, Kluwer Academic/Plenum Publishers, New York, (2003).

Google Scholar

[12] A. Jebali, N. Khemiri, M.Kanzari, The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films, Journal of Alloys and Compounds 673 (2016) 38-46.

DOI: 10.1016/j.jallcom.2016.02.159

Google Scholar

[13] E.A. Davis, N.F. Mott, Conduction in non-crystalline systems conductivity, optical absorption and photoconductivity in amorphous semiconductors, Phil. Mag. 22 (1970) 0903-0922.

DOI: 10.1080/14786437008221061

Google Scholar

[14] P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, Effect of post deposition heat treatment on microstructure parameters, optical constants and composition of thermally evaporated CdTe thin films, Materials Science in Semiconductor Processing 58 (2017) 51-60.

DOI: 10.1016/j.mssp.2016.11.028

Google Scholar

[15] M. Berruet, M. Va´zquez, Electrodeposition of single and duplex layers of ZnO with different morphologies and electrical properties, Materials Science in Semiconductor Processing 13, 239 (2010) 239–244.

DOI: 10.1016/j.mssp.2010.08.001

Google Scholar

[16] T.S. Moss, Proc. Phys. Soc. Simplistic Theoretical Model for Optoelectronic Properties of Compound Semiconductors B 63 (1950) 167.

Google Scholar

[17] N.M. Ravindra, V.K. Srivastava, Infrared Phys. Simplistic Theoretical Model for Optoelectronic Properties of Compound Semiconductors 19 (1979) 603-604.

Google Scholar

[18] V.P. Gupta, N.M. Ravindra, Comments on the Noss Formula , Phys. Stat. Sol. B 100 (1980) 715-719.

DOI: 10.1002/pssb.2221000240

Google Scholar

[19] P. Herve, L.K.J. Vandamme, General relation between refractive index and energy gap in semiconductors, Infrared Phys. 35 (1994) 609-615.

DOI: 10.1016/1350-4495(94)90026-4

Google Scholar

[20] R. Swanepoel, J. Phys. E Sci. Determination of the thickness and optical constants of amorphous silicon,Instrum. 16 (1983) 1214-1222.

DOI: 10.1088/0022-3735/16/12/023

Google Scholar

[21] J.C. Manifacier, J. Gasiot, J.P. Fillard, A simple method for the determination of the optical constants and thickness of weakly absorbing films, J. Phys. 9 (1976) 1002-1004.

DOI: 10.1088/0022-3735/9/11/032

Google Scholar

[22] K.S. Usha, R. Sivakumar, C. Sanjeeviraja, Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique, Journal of Applied Physics 114 (2013) 123501-123510.

DOI: 10.1063/1.4821966

Google Scholar

[23] N.M. Khusayfan, M.M. El-Nahass, Study of structure and electro-optical characteristics of indium tin oxide thin films, Advances in Condensed Matter Physics 2013 (2013) 408182-408189.

DOI: 10.1155/2013/408182

Google Scholar

[24] B. Khalfallah, N. Khemiri, M. Kanzari, Temperature effect on the physical properties of CuIn11S17 thin films for photovoltaic applications, Materials Science in Semiconductor Processing 24 (2014) 265-271.

DOI: 10.1016/j.mssp.2014.03.048

Google Scholar

[25] S.H. Wemple, M. Di Domenico, Behavior of the electronic dielectric constant in covalent and ionic materials, Phys. Rev. B 3 (1971) 1338-1351.

DOI: 10.1103/physrevb.3.1338

Google Scholar

[26] W.G. Spitzer, H.Y. Fan, Determination of Optical Constants and Carrier Effective Mass of Semiconductors, Phys. Rev. 106 (1957) 882-890.

DOI: 10.1103/physrev.106.882

Google Scholar