Effects of Electromagnetic Fields Exposure on the Production of Nanosized Magnetosome, Elimination of Free Radicals and Antioxidant Defense Systems in Magnetospirillum gryphiswaldense MSR-1

Article Preview

Abstract:

Magnetotactic bacteria integrated magnetosomes, which are unique organelles that contain nanosized crystals of biogenic magnetic iron minerals with the ability to respond to the external magnetic fields. The biogenic magnetic nanoparticles (magnetosomes) show high biocompatibility in medical applications especially as scavengers to eliminate intracellular reactive oxygen species. The aim of this study was to highlight the impact of magnetosome formation and antioxidant systems in the suppression of oxidative stress on the magnetotactic bacteria cells. To assess the changes in ROS levels under different magnetic field intensity conditions, cells were cultured under the microaerobic condition in medium containing the high and low intensity of magnetic field. Treatment of magnetic field with an intensity of 500 mT during 50 hours bionormalization process of magnetotactic bacteria increased the antioxidant enzyme activity for eliminating of free radicals by 64%. We concluded that magnetosomes production plays an important role in decreasing or eliminating ROS. This is the first study to demonstrate that the magnetic field assisted magnetosome formation and antioxidants defense systems in Magnetospirillum gryphiswaldense MSR-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-31

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.A. Bazylinski, R.B. Frankel, Nat. Rev. Microbiol. 2 (2004) 217.

Google Scholar

[2] C.T. Lefèvre, D.A. Bazylinski, Microbiol. Mol. Biol. Rev. 77 (2013) 497 LP-526.

Google Scholar

[3] F. Fang Guo, W. Yang, W. Jiang, S. Geng, T. Peng, J. Lun Li, Magnetosomes Eliminate Intracellular Reactive Oxygen Species in Magnetospirillum Gryphiswaldense MSR‐1, (2012).

DOI: 10.1111/j.1462-2920.2012.02707.x

Google Scholar

[4] S.S. Staniland, A.E. Rawlings, Biochem. Soc. Trans. 44 (2016) 883–890.

Google Scholar

[5] A. Arakaki, H. Nakazawa, M. Nemoto, T. Mori, T. Matsunaga, J. R. Soc. Interface 5 (2008) 977–999.

Google Scholar

[6] E. Alphandéry, Front. Bioeng. Biotechnol. 2 (2014) 5.

Google Scholar

[7] C. Moisescu, I.I. Ardelean, L.G. Benning, Front. Microbiol. 5 (2014) 49.

Google Scholar

[8] F.F. Guo, W. Yang, W. Jiang, S. Geng, T. Peng, J.L. Li, Environ. Microbiol. 14 (2012) 1722–1729.

Google Scholar

[9] F.F. Guo, W. Yang, W. Jiang, S. Geng, T. Peng, J.L. Li, G.F. Fang, Y. Wei, J. Wei, G. Shuang, P. Tao, L.J. Lun, Environ. Microbiol. 14 (2012) 1722–1729.

Google Scholar

[10] F.F. Guo, W. Yang, W. Jiang, S. Geng, T. Peng, J.L. Li, Environ. Microbiol. 14 (2012) 1722–1729.

Google Scholar

[11] M.E. Maffei, Front. Plant Sci. 5 (2014) 445.

Google Scholar

[12] Z. Ren, X. Leng, Q. Liu, Water Sci. Technol. (2017).

Google Scholar

[13] Y. Wang, W. Lin, J. Li, Y. Pan, Front. Microbiol. 4 (2013).

Google Scholar

[14] H. Wang, X. Zhang, Int. J. Mol. Sci. 18 (2017) 1–20.

Google Scholar

[15] C. Dahmani, Static and Dynamic Magnetic Fields for the Nanoparticle Based Site-Directed Drug Delivery, (2014).

Google Scholar

[16] R. Popa, W. Fang, K.H. Nealson, V. Souza-Egipsy, T.S. Berqú, S.K. Banerje, L.R. Penn, Int. Microbiol. 12 (2009) 49–57.

Google Scholar

[17] E.G. Kıvrak, K.K. Yurt, A.A. Kaplan, I. Alkan, G. Altun, J. Microsc. Ultrastruct. 5 (2017) 167–176.

Google Scholar

[18] M. Domenech, I. Marrero-Berrios, M. Torres-Lugo, C. Rinaldi, ACS Nano 7 (2013) 5091–5101.

DOI: 10.1021/nn4007048

Google Scholar

[19] V.N. Binhi, F.S. Prato, Biological Effects of the Hypomagnetic Field: An Analytical Review of Experiments and Theories, (2017).

DOI: 10.1371/journal.pone.0179340

Google Scholar

[20] A. (Scenihr), Opin. Sci. Comm. EU (2009).

Google Scholar

[21] M. Circu, T.Y. Aw, Free Radic Biol Med. 2010 48 (2010) 749–762.

Google Scholar

[22] M.-O. Mattsson, M. Simkó, Front. Public Heal. 2 (2014) 132.

Google Scholar

[23] M. Simko, Cell Type Specific Redox Status Is Responsible for Diverse Electromagnetic Field Effects, (2007).

DOI: 10.2174/092986707780362835

Google Scholar

[24] J.-B. Sun, F. Zhao, T. Tang, W. Jiang, J. Tian, Y. Li, J.-L. Li, Appl. Microbiol. Biotechnol. 79 (2008) 389.

Google Scholar

[25] Y. Liu, G.R. Li, F.F. Guo, W. Jiang, Y. Li, L.J. Li, Microb. Cell Fact. 9 (2010) 99.

Google Scholar

[26] D. Schüler, E. Baeuerlein, J. Bacteriol. 180 (1998) 159–162.

Google Scholar

[27] F. Fang, Y. Li, G.-C. Du, J. Zhang, J. Chen, Sheng Wu Gong Cheng Xue Bao 20 (2004) 423–428.

Google Scholar

[28] H.U. Bergmeyer, J. Bergmeyer, M. Grassl, Methods of Enzymatic Analysis, Verlag Chemie, Weinheim; Deerfield Beach, Fla., (1983).

DOI: 10.1016/0014-5793(84)81399-x

Google Scholar

[29] C. Yingqing, L. Zhongxiong, S. Jinshan, C. Yiting, L. Guoqing, L. Yuling, Z. Wenlu, CHINESE J. Trop. Crop. 27 (2006) 29–33.

Google Scholar

[30] D. Schüler, R. Uhl, E. Bäuerlein, FEMS Microbiol. Lett. 132 (1995) 139–145.

Google Scholar

[31] L. Zhao, D. Wu, L.-F. Wu, T. Song, J. Biochem. Biophys. Methods 70 (2007) 377–383.

Google Scholar

[32] (n.d.).

Google Scholar

[33] Ö. Çelik, N. Büyükuslu, Ç. Atak, A. Rzakoulieva, Pol J Env. Stud 18 (2009) 175–182.

Google Scholar

[34] J. Li, Y. Yi, X. Cheng, D. Zhang, M. Irfan, Bot. Stud. 56 (2015) 1–20.

Google Scholar

[35] J. Li, Y. Yi, X. Cheng, D. Zhang, M. Irfan, Bot. Stud. 56 (2015) 2.

Google Scholar