[1]
Siegel RL, Miller KD, Jemal A Cancer statistics, 2016. CA Cancer J Clin. 66 (2016) 7–30.
Google Scholar
[2]
Halperin EC, Brady LW, Wazer DE, Perez CA Perez & Brady's principles and practice of radiation oncology. Lippincott Williams & Wilkins.
Google Scholar
[3]
Chen H, Zhou X, Gao Y, et al Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov Today. 19 (2014) 502–509.
DOI: 10.1016/j.drudis.2014.01.010
Google Scholar
[4]
Shen S, Wu L, Liu J, et al Core–shell structured Fe3O4@ TiO2-doxorubicin nanoparticles for targeted chemo-sonodynamic therapy of cancer. Int J Pharm. 486 (2015) 380–388.
DOI: 10.1016/j.ijpharm.2015.03.070
Google Scholar
[5]
Beik J, Abed Z, Shakeri-Zadeh A, et al Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Phys E Low-dimensional Syst Nanostructures. 81 (2016) 308–314.
DOI: 10.1016/j.physe.2016.03.023
Google Scholar
[6]
Rosenthal I, Sostaric JZ, Riesz P Sonodynamic therapy––a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem. 11 (2004) 349–363.
DOI: 10.1016/j.ultsonch.2004.03.004
Google Scholar
[7]
Barati AH, Mokhtari-Dizaji M Ultrasound dose fractionation in sonodynamic therapy. Ultrasound Med Biol. 36 (2010) 880–887.
DOI: 10.1016/j.ultrasmedbio.2010.03.010
Google Scholar
[8]
Trendowski M The promise of sonodynamic therapy. Cancer Metastasis Rev. 33 (2014) 143–160.
DOI: 10.1007/s10555-013-9461-5
Google Scholar
[9]
Canavese G, Ancona A, Racca L, et al Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chem Eng J. 340 (2018) 155–172.
DOI: 10.1016/j.cej.2018.01.060
Google Scholar
[10]
Harada Y, Ogawa K, Irie Y, et al Ultrasound activation of TiO2 in melanoma tumors. J Control Release. 149 (2011) 190–195.
DOI: 10.1016/j.jconrel.2010.10.012
Google Scholar
[11]
Wan G-Y, Liu Y, Chen B-W, et al Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol Med. 13 (2016) 325.
Google Scholar
[12]
Baghbani F, Chegeni M, Moztarzadeh F, et al Ultrasonic nanotherapy of breast cancer using novel ultrasound-responsive alginate-shelled perfluorohexane nanodroplets: In vitro and in vivo evaluation. Mater Sci Eng C Mater Biol Appl. 77 (2017) 698–707.
DOI: 10.1016/j.msec.2017.02.017
Google Scholar
[13]
Xu H, Zhang X, Han R, et al Nanoparticles in sonodynamic therapy: state of the art review. RSC Adv. 6 (2016) 50697–50705.
DOI: 10.1039/c6ra06862f
Google Scholar
[14]
Maeda H The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 41 (2001) 189–207.
DOI: 10.1016/s0065-2571(00)00013-3
Google Scholar
[15]
Fakhimikabir H, Tavakoli MB, Zarrabi A, et al The role of folic acid-conjugated polyglycerol coated iron oxide nanoparticles on radiosensitivity with clinical electron beam (6 MeV) on human cervical carcinoma cell line: In vitro study. J Photochem Photobiol B Biol. 182 (2018) 71–76.
DOI: 10.1016/j.jphotobiol.2018.03.023
Google Scholar
[16]
Khoei S, Mahdavi SR, Fakhimikabir H, et al The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. Int J Radiat Biol. 90 (2014) 351–356.
DOI: 10.3109/09553002.2014.888104
Google Scholar
[17]
Fakhimikabir H, Tavakoli MB, Zarrabi A, et al Could FA-PG-SPIONs act as a hyperthermia sensitizing agent? An in vitro study. J Therm Biol. 78 (2018) 73–83.
DOI: 10.1016/j.jtherbio.2018.09.010
Google Scholar
[18]
Pan X, Wang H, Wang S, et al Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics. Sci China Life Sci. (2018) 1–12.
DOI: 10.1007/s11427-017-9262-x
Google Scholar
[19]
Shanei A, Mahdi M, Shanei MM Effect of gold nanoparticle size on acoustic cavitation using chemical dosimetry method. Ultrason Sonochem. 34 (2017) 45–50.
DOI: 10.1016/j.ultsonch.2016.05.010
Google Scholar
[20]
Kennedy LC, Bickford LR, Lewinski NA, et al A new era for cancer treatment: gold‐nanoparticle‐mediated thermal therapies. Small. 7 (2011) 169–183.
DOI: 10.1002/smll.201000134
Google Scholar
[21]
Shanei A, Sazgarnia A, Tayyebi Meibodi N, et al Sonodynamic therapy using protoporphyrin IX conjugated to gold nanoparticles: an in vivo study on a colon tumor model. Iran J Basic Med Sci. 15 (2012) 759–767.
Google Scholar
[22]
Eshghi H, Sazgarnia A, Rahimizadeh M, et al Protoporphyrin IX–gold nanoparticle conjugates as an efficient photosensitizer in cervical cancer therapy. Photodiagnosis Photodyn Ther. 10 (2013) 304–312.
DOI: 10.1016/j.pdpdt.2013.02.003
Google Scholar
[23]
Grabar KC, Freeman RG, Hommer MB, Natan MJ Preparation and characterization of Au colloid monolayers. Anal Chem. 67 (1995) 735–743.
DOI: 10.1021/ac00100a008
Google Scholar
[24]
Sazgarnia A, Shanei A, Taheri AR, et al Therapeutic effects of acoustic cavitation in the presence of gold nanoparticles on a colon tumor model. J Ultrasound Med. 32 (2013) 475–483.
DOI: 10.7863/jum.2013.32.3.475
Google Scholar
[25]
Sazgarnia A, Shanei A, Meibodi NT, et al A Novel Nanosonosensitizer for Sonodynamic Therapy. J Ultrasound Med. 30 (2011) 1321–1329.
DOI: 10.7863/jum.2011.30.10.1321
Google Scholar
[26]
Khoshgard K, Hashemi B, Arbabi A, et al Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques. Phys Med Biol. 59 (2014) 2249–2263.
DOI: 10.1088/0031-9155/59/9/2249
Google Scholar
[27]
Geng F, Song K, Xing JZ, et al Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology. 22 (2011) 285101.
DOI: 10.1088/0957-4484/22/28/285101
Google Scholar
[28]
Liu Y, Liu X, Jin X, et al The dependence of radiation enhancement effect on the concentration of gold nanoparticles exposed to low-and high-LET radiations. Phys Medica. 31 (2015) 210–218.
DOI: 10.1016/j.ejmp.2015.01.006
Google Scholar
[29]
Patra HK, Banerjee S, Chaudhuri U, et al Cell selective response to gold nanoparticles. Nanomedicine Nanotechnology, Biol Med. 3 (2007) 111–119.
DOI: 10.1016/j.nano.2007.03.005
Google Scholar
[30]
Pan Y, Neuss S, Leifert A, et al Size‐dependent cytotoxicity of gold nanoparticles. Small. 3 (2007) 1941–(1949).
DOI: 10.1002/smll.200700378
Google Scholar
[31]
Kang B, Mackey MA, El-Sayed MA Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc. 132 (2010) 1517–1519.
DOI: 10.1021/ja9102698
Google Scholar
[32]
Yamaguchi S, Kobayashi H, Narita T, et al Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: Comparison of cytotoxic mechanism with photodynamic therapy. Ultrason Sonochem. 18 (2011) 1197–1204.
DOI: 10.1016/j.ultsonch.2010.12.017
Google Scholar
[33]
Liang L, Xie S, Jiang L, et al The combined effects of hematoporphyrin monomethyl ether-SDT and doxorubicin on the proliferation of QBC939 cell lines. Ultrasound Med Biol. 39 (2013) 146–160.
DOI: 10.1016/j.ultrasmedbio.2012.08.017
Google Scholar
[34]
Holland CK, Apfel RE Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment. J Acoust Soc Am. 88 (1990) 2059–(2069).
DOI: 10.1121/1.400102
Google Scholar
[35]
Brazzale C, Canaparo R, Racca L, et al Enhanced selective sonosensitizing efficacy of ultrasound-based anticancer treatment by targeted gold nanoparticles. Nanomedicine. 11 (2016) 3053–3070.
DOI: 10.2217/nnm-2016-0293
Google Scholar
[36]
Kosheleva OK, Lai T-C, Chen NG, et al Selective killing of cancer cells by nanoparticle-assisted ultrasound. J Nanobiotechnology. 14 (2016) 46.
DOI: 10.1186/s12951-016-0194-9
Google Scholar