[1]
A. Jordan, P. Wust, H. Fahling, W. John, A. Hinz and R. Felix, Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. International Journal of Hyperthermia. 9 (1993) 51-68.
DOI: 10.3109/02656739309061478
Google Scholar
[2]
H. Basti, L. Ben Tahar, L.S. Smiri, F. Herbst, M.J. Vaulay, F. Chau, S. Ammar, S. Benderbous, Catechol derivatives-coated Fe3O4 and gamma-Fe2O3 nanoparticles as potential MRI contrast agents. J. Colloid Interface Sci. 341 (2010) 248–54.
DOI: 10.1016/j.jcis.2009.09.043
Google Scholar
[3]
P.B. Shete, R.M. Patil, N.D. Thorat, A. Prasad, R.S. Ningthoujam, S.J. Ghosh and S.H. Pawar, Magnetic chitosan nanocomposite for hyperthermia therapy application: Preparation, characterization and in vitro experiments. Appl. Surf. Sci. 288 (2014) 149–157.
DOI: 10.1016/j.apsusc.2013.09.169
Google Scholar
[4]
N.D. Thorat, O.M. Lemine, A. Raghvendra, K. Omri, K, L. El Mir and S.A.M. Tofail, Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Physical Chemistry Chemical Physics, 18 (2016) 21331 – 21339.
DOI: 10.1039/c6cp03430f
Google Scholar
[5]
O.M. Lemine, K. Omri, K, L. El Mir, V. Velasco, P. Crespo, P. De Presa, H. Bouzid, A. Youssif and A. Hajry, Fe2O3 nanoparticles for magnetic hyperthermia applications. Mater. Res. Soc. Symp. Proc. 1779 (2015) 7-13.
DOI: 10.1557/opl.2015.697
Google Scholar
[6]
M. Iglesias, V. Velasco, O.M. Lemine, K. Omri, L. El Mir, H. Bouzid, A. Youssif, A. Hajry, P. Crespo, P. De la Presa, γ-Fe2O3 nanoparticles obtained by sol-gel: dependence of magnetism and heating efficiency on particle size, INTERMAG Proc (2014) , May 4-8, 2014 , Dresden , Germany.
DOI: 10.1016/j.jallcom.2014.04.002
Google Scholar
[7]
O.M. Lemine, K. Omri, K, L. El Mir, V. Velasco, P. Crespo, P. De Presa, H. Bouzid, A. Youssif and A. Hajry, A., γ-Fe2O3 by sol-gel With Large Nanoparticles Size for Magnetic Hyperthermia Application. Journal of Alloys and Compounds. 607 (2014) 125–131.
DOI: 10.1016/j.jallcom.2014.04.002
Google Scholar
[8]
P. De la Presa, Y. Luengo, M. Multigner, R. Costo, M.P. Morales, G. Rivero and A. Hernando, Study of Heating Efficiency as Function of Concentration, Size and Applied Field in γ-Fe2O3 Nanoparticles. The Journal of Physical Chemistry C. 116 (2012) 25602−25610.
DOI: 10.1021/jp310771p
Google Scholar
[9]
R.A. Bohara, N.D. Thorat, A.K. Chaurasi and S.H. Pawar, Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles. RSC Adv. 58(2015) 47225.
DOI: 10.1039/c5ra04553c
Google Scholar
[10]
E. Kita, S.Hashimoto, T. Kayano, M. Minagawa, H. Yanagihara, M. Kishimoto, K. Yamada, T. Oda, N. Ohkohchi, T. Takagi, T. Kanamori, Y. Ikehata and I. Nagano, Heating characteristics of ferromagnetic iron oxide nanoparticles for magnetic hyperthermia. Journal of Applied Physics. 107 (2010) 09B321-09B321.
DOI: 10.1063/1.3355917
Google Scholar
[11]
C. Martinez-Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. Estrade, F. Peiro, Z. Saghi, P.A. Midgley, I. Conde-Leboran, D. Serantes, D. and D. Baldomir, Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3 (2010) 1652.
DOI: 10.1038/srep01652
Google Scholar
[12]
A.M. Al-Saie, M. Bououdina, A. Jaffar, S. Arekat, J.M. Melnyczu, Y.T. Thai and C.S. Brazel, The effect of annealing on the structure, magnetic properties and AC heating of CoFe2O4 for biomedical applications. Journal of Alloys and Compounds. 509 (2011) 393–396.
DOI: 10.1016/j.jallcom.2011.02.024
Google Scholar
[13]
R. Sani, A. Beitollahi, Y.V. Maksimov and I.P. Suzdalev, Synthesis, Phase Formation Study and Magnetic Properties of CoFe2O4 Nanopowder Prepared by Mechanical Milling. Journal of Materials Science. 42(2007) 2126-2131.
DOI: 10.1007/s10853-006-1235-9
Google Scholar
[14]
R. Hergt and S. Dutz, Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. Journal of Magnetism and Magnetic Materials. 311 (2007) 187-192.
DOI: 10.1016/j.jmmm.2006.10.1156
Google Scholar
[15]
S. Laurent, S. Dutz, U.O. Häfeli and M. Mahmoudi, Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science. 166 (2011) 8-23.
DOI: 10.1016/j.cis.2011.04.003
Google Scholar
[16]
E.J. Moon, P. Sonveaux, P.E. Porporato, P. Danhier, B. Gallez, I. Batinic-Haberle, Y.C. Nien, T. Schroeder and M.W. Dewhirst, NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment. Proc. Natl. Acad. Sci. U. S. A. 107 (2010) PP20477–20482.
DOI: 10.1073/pnas.1006646107
Google Scholar
[17]
D. Trachootham, J. Alexandre and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discovery. 8 (2009) 579.
DOI: 10.1038/nrd2803
Google Scholar