Mechanically Milled Co1-xFexO4 Nanocrystalline for Magnetic Hyperthermia Application

Article Preview

Abstract:

Mechanical alloying of a mixture of Fe2O3 and CoO powders has been applied for the preparation of nanocrystalline. Utilizing a ball-to-powder mass ratio of 20, milling time of 20 hours followed by annealing at 900°C, we could obtain a nanocrystalline of high crystallinity and composed of mainly CoFe2O4 phase with presence of Fe2O3 as revealed by X-ray diffraction (XRD) measurements. Magnetic measurements using vibrating sample magnetometer (VSM) reveal high saturation magnetization for the annealed sample close to CoFe2O4 phase value. The heating efficiency of the obtained nanocrystalline is studied under an alternating magnetic field and as a function of the concentration. It was found that the nanocrystalline generate a substantial amount of heat when exposed to an alternating magnetic field. In vitro hyperthermia experiment was carried out and our result clearly demonstrates the ability of the obtained nanocrystalline to kill cancer cell through magnetic hyperthermia.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-34

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Jordan, P. Wust, H. Fahling, W. John, A. Hinz and R. Felix, Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. International Journal of Hyperthermia. 9 (1993) 51-68.

DOI: 10.3109/02656739309061478

Google Scholar

[2] H. Basti, L. Ben Tahar, L.S. Smiri, F. Herbst, M.J. Vaulay, F. Chau, S. Ammar, S. Benderbous, Catechol derivatives-coated Fe3O4 and gamma-Fe2O3 nanoparticles as potential MRI contrast agents. J. Colloid Interface Sci. 341 (2010) 248–54.

DOI: 10.1016/j.jcis.2009.09.043

Google Scholar

[3] P.B. Shete, R.M. Patil, N.D. Thorat, A. Prasad, R.S. Ningthoujam, S.J. Ghosh and S.H. Pawar, Magnetic chitosan nanocomposite for hyperthermia therapy application: Preparation, characterization and in vitro experiments. Appl. Surf. Sci. 288 (2014) 149–157.

DOI: 10.1016/j.apsusc.2013.09.169

Google Scholar

[4] N.D. Thorat, O.M. Lemine, A. Raghvendra, K. Omri, K, L. El Mir and S.A.M. Tofail, Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Physical Chemistry Chemical Physics, 18 (2016) 21331 – 21339.

DOI: 10.1039/c6cp03430f

Google Scholar

[5] O.M. Lemine, K. Omri, K, L. El Mir, V. Velasco, P. Crespo, P. De Presa, H. Bouzid, A. Youssif and A. Hajry, Fe2O3 nanoparticles for magnetic hyperthermia applications. Mater. Res. Soc. Symp. Proc. 1779 (2015) 7-13.

DOI: 10.1557/opl.2015.697

Google Scholar

[6] M. Iglesias, V. Velasco, O.M. Lemine, K. Omri, L. El Mir, H. Bouzid, A. Youssif, A. Hajry, P. Crespo, P. De la Presa, γ-Fe2O3 nanoparticles obtained by sol-gel: dependence of magnetism and heating efficiency on particle size, INTERMAG Proc (2014) , May 4-8, 2014 , Dresden , Germany.

DOI: 10.1016/j.jallcom.2014.04.002

Google Scholar

[7] O.M. Lemine, K. Omri, K, L. El Mir, V. Velasco, P. Crespo, P. De Presa, H. Bouzid, A. Youssif and A. Hajry, A., γ-Fe2O3 by sol-gel With Large Nanoparticles Size for Magnetic Hyperthermia Application. Journal of Alloys and Compounds. 607 (2014) 125–131.

DOI: 10.1016/j.jallcom.2014.04.002

Google Scholar

[8] P. De la Presa, Y. Luengo, M. Multigner, R. Costo, M.P. Morales, G. Rivero and A. Hernando, Study of Heating Efficiency as Function of Concentration, Size and Applied Field in γ-Fe2O3 Nanoparticles. The Journal of Physical Chemistry C. 116 (2012) 25602−25610.

DOI: 10.1021/jp310771p

Google Scholar

[9] R.A. Bohara, N.D. Thorat, A.K. Chaurasi and S.H. Pawar, Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles. RSC Adv. 58(2015) 47225.

DOI: 10.1039/c5ra04553c

Google Scholar

[10] E. Kita, S.Hashimoto, T. Kayano, M. Minagawa, H. Yanagihara, M. Kishimoto, K. Yamada, T. Oda, N. Ohkohchi, T. Takagi, T. Kanamori, Y. Ikehata and I. Nagano, Heating characteristics of ferromagnetic iron oxide nanoparticles for magnetic hyperthermia. Journal of Applied Physics. 107 (2010) 09B321-09B321.

DOI: 10.1063/1.3355917

Google Scholar

[11] C. Martinez-Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. Estrade, F. Peiro, Z. Saghi, P.A. Midgley, I. Conde-Leboran, D. Serantes, D. and D. Baldomir, Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3 (2010) 1652.

DOI: 10.1038/srep01652

Google Scholar

[12] A.M. Al-Saie, M. Bououdina, A. Jaffar, S. Arekat, J.M. Melnyczu, Y.T. Thai and C.S. Brazel, The effect of annealing on the structure, magnetic properties and AC heating of CoFe2O4 for biomedical applications. Journal of Alloys and Compounds. 509 (2011) 393–396.

DOI: 10.1016/j.jallcom.2011.02.024

Google Scholar

[13] R. Sani, A. Beitollahi, Y.V. Maksimov and I.P. Suzdalev, Synthesis, Phase Formation Study and Magnetic Properties of CoFe2O4 Nanopowder Prepared by Mechanical Milling. Journal of Materials Science. 42(2007) 2126-2131.

DOI: 10.1007/s10853-006-1235-9

Google Scholar

[14] R. Hergt and S. Dutz, Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. Journal of Magnetism and Magnetic Materials. 311 (2007) 187-192.

DOI: 10.1016/j.jmmm.2006.10.1156

Google Scholar

[15] S. Laurent, S. Dutz, U.O. Häfeli and M. Mahmoudi, Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science. 166 (2011) 8-23.

DOI: 10.1016/j.cis.2011.04.003

Google Scholar

[16] E.J. Moon, P. Sonveaux, P.E. Porporato, P. Danhier, B. Gallez, I. Batinic-Haberle, Y.C. Nien, T. Schroeder and M.W. Dewhirst, NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment. Proc. Natl. Acad. Sci. U. S. A. 107 (2010) PP20477–20482.

DOI: 10.1073/pnas.1006646107

Google Scholar

[17] D. Trachootham, J. Alexandre and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discovery. 8 (2009) 579.

DOI: 10.1038/nrd2803

Google Scholar