Spectroscopy Resonance Plasmon Efficient Tool for Cell Adsorption

Article Preview

Abstract:

It is important to analyze cell monolayer adherence for the development of biomedical devices of anti-thrombogenic vascular grafts. Endothelial cells must be firmly attached to the biomaterials when cells are seeded in order to create a natural lining. Polystyrene (PS) is presented as a reproducible implant model substrate for studying cell – material interactions. Polystyrene was deposited as a thin layer on a thiol functionalized gold electrode. Fibronectin (Fn), a protein promoting the cell monolayer adhesion was adsorbed on PS surface. The different steps of this multilayer assembly were characterized by Surface Plasmon Resonance (SPR) technique. A right shift of the SPR resonance angle θSPR was observed leading an increase from 65.5 deg in the case of gold electrode to 66.8 deg in the case where cell monolayer was cultured onto functionalized gold substrate. A shift in the SPR peak minimum intensity was detected in the SPR response of Au/Thiol/PS/Fn and Au/Thiol/PS/Fn/Cell multilayer assembly structures. This result is explained using Atomic Force Microscopy (AFM) images and according transverse profiles which indicate surface morphological modifications in term of thickness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-45

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wood. R.W., Philos. Mag. Ser. , 6 (4) (1902) 396 – 402.

Google Scholar

[2] Liedberg B. Nylander C. Lunstrom I. Sens. Actuators B 4 ( 1983) 299 – 304.

Google Scholar

[3] Scarano, S.; Mascini, M.; Turner, A.P.F.; Minunni, M. Surface plasmon resonance imaging for affinity-based biosensors. Biosens. Bioelectron. 25 (2010) 957–966.

DOI: 10.1016/j.bios.2009.08.039

Google Scholar

[4] Cooper, M.A. Lable-free screening of bio-molecular interactions. Anal. Bioanal. Chem. 377 (2003) 834–842.

Google Scholar

[5] Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad. Sci. 102 (1962) 29–45.

Google Scholar

[6] Yao, X.; Li, X.; Toledo, F.; Zurita-Lopez, C.; Gutova, M.; Momand, J.; Zhou, F. Sub-attomole oligonucleotide and p.53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Anal. Biochem. 354 (2006) 220–228.

DOI: 10.1016/j.ab.2006.04.011

Google Scholar

[7] Yanase, Y., Suzuki, H., Tsutsui, T., Hiragun, T., Kameyoshi, Y., Hide, M. Biosens. Bioelectron. 22 (2007) 1081-1086.

Google Scholar

[8] Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 54 (1999) 3–15.

DOI: 10.1016/s0925-4005(98)00321-9

Google Scholar

[9] H. Raether, in: G. Hass, M. Francombe, R. Hoffman (Eds). Physics of Thin Films, Academic Press, New-York 1977 p.145 – 261.

Google Scholar

[10] A. Szabo, L. Stolz, R. Granow, Curr. Opin. Struct. Bio, 5 (1995) 699 – 705.

Google Scholar

[11] E. Ostuni, L.Yan, G.M. whitesides, Colloids and surfaces B. Biointerfaces 15 (1993) 3 – 30.

Google Scholar

[12] E. Ostuni, L.Yan, G.M. whitesides, Colloids and surfaces B. Biointerfaces 15 (1993) 3 – 30.

Google Scholar

[13] H. J. Kim, I. T. Chang, S. J. Heo, J. Y. Koak, S. K. Kim, J. H. Jang, Clinical Oral Implants Research, 16 (2005) 557.

Google Scholar

[14] G. Altankov, V. Thom, T. Groth, K. Jankova, G. Jonsson, M. Ulbrich, Journal of Biomedical Materials Research, 52 (2000) 219.

Google Scholar

[15] J. Hoddle, R. Record, R. Tullius, S. Badylak, Biomaterials, 23 (2002) 1841.

Google Scholar

[16] A. Bouafsoun, A. Othmane, N. Jaffrezic-Renault, A. Kerkeni, O. Thoumire, A.F. Prigent and L. Ponsonnet, Materials Science and Engineering C 28 (2008) 653-661.

DOI: 10.1016/j.msec.2007.10.073

Google Scholar

[17] T. Viitala, N. Granqvist, S. Hallila, M. Ravina, M. Yliperttula, Plos ONE 8 (8) 2013, e 72192,.

Google Scholar

[18] V.I. Chegel, Yu. M. Shirshov, sensor Electronics and Microsystems Technologies 2 (2004) 34 – 49.

Google Scholar