Development and Characterization of Bilayer Wound Healing Patch Nanofiber Fabricated by Electrospinning

Article Preview

Abstract:

The present study aims to develop bilayer polymeric nanofiber patch (PNP) fabricated by electrospinning technique using for wound dressing. The nanofiber was prepared by various concentrations of polyvinyl alcohol (PVA) and modified tamarind seed gum loaded with clindamycin HCl (CM) in first layer and Eudragit® S100 for a second layer. ​According to the SEM result, the physical appearance, the sprayed products prepared from PVA, mixture of PVA and gum, Eudragit® S100 were in round fiber with different diameter size ranged from 153-1830 nm. The polymer concentration, solution conductivity and surface tension affected on the appearance of the nanofiber. The patch was successfully prepared in form of two layer welded with the nanofiber under the optimized electrospinning condition which are 20 kV of applied voltage, 20 cm of injection distance, 0.25 mL of solution feed rate and 48 rpm of collector rolling rate. The DSC and PXRD indicated that the drug in PNPs was in amorphous form. Biological test revealed that bilayer PNPs contained PVA 10%, modified tamarind seed gum 5% and clindamycin 1% had an efficiency to inhibit Staphylococcus aureus. These results show the possibility of improving nanofiber patch strength by using Eudragit® S100 and modified tamarind gum seed as a natural material in nanofiber patch formulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-56

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Castaño, S. Pérez-Amodio, C. Navarro-Requena, M.Á. Mateos-Timoneda, E. Engel, Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms, Adv. Drug Deliv. Rev. 129 (2018) 95-117.

DOI: 10.1016/j.addr.2018.03.012

Google Scholar

[2] S. Dhivya, V.V. Padma, E. Santhini, Wound dressings - a review, Biomedicine (Taipei). 5 (2015) 22.

DOI: 10.7603/s40681-015-0022-9

Google Scholar

[3] M. Liu, X.P. Duan, Y.M. Li, D.P. Yang, Y.Z. Long, Electrospun nanofibers for wound healing, Mater. Sci. Eng. C. 76 (2017) 1413-1423.

Google Scholar

[4] R. Vasita, D.S. Katti, Nanofibers and their applications in tissue engineering, Int. J. Nanomedicine. 1 (2006) 15-30.

Google Scholar

[5] R. Nayak, R. Padhye, I.L. Kyratzis, Y.B. Truong, L. Arnold, Recent advances in nanofibre fabrication techniques, Text. Res. J. 82 (2012) 129-147.

DOI: 10.1177/0040517511424524

Google Scholar

[6] T. Sangnim, S. Limmatvapirat, J. Nunthanid, P. Sriamornsak, W. Sittikijyothin, K. Huanbutta, Design and characterization of clindamycin-loaded nanofiber patches composed of polyvinyl alcohol and tamarind seed gum and fabricated by electrohydrodynamic atomization, Asian J. Pharm. 13 (2018) 450-458.

DOI: 10.1016/j.ajps.2018.01.002

Google Scholar

[7] P. Raghavan, D.H. Lim, J.H. Ahn, C. Nah, D.C. Sherington, H.S. Ryu, H.J. Ahn, Electrospun polymer nanofibers: The booming cutting edge technology, Reac. Funct. Polym. 72 (2012) 915-930.

DOI: 10.1016/j.reactfunctpolym.2012.08.018

Google Scholar

[8] E.A. Kamoun, E.-R.S. Kenawy, X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings, J. Adv. Res. 8 (2017) 217-233.

DOI: 10.1016/j.jare.2017.01.005

Google Scholar

[9] K. Huanbutta, W. Sittikijyothin, Use of seed gums from Tamarindus indica and Cassia fistula as controlled-release agents, Asian J. Pharm. 13 (2018) 398-408.

DOI: 10.1016/j.ajps.2018.02.006

Google Scholar

[10] M.A. Khan, U. Ansari, M.N. Ali, Real-time wound management through integrated pH sensors: a review, Sensor Rev. 35 (2015) 183-189.

DOI: 10.1108/sr-08-2014-689

Google Scholar

[11] K. Huanbutta, T. Sangnim, S. Limmatvapirat, P. Sriamornsak, Design and characterization of prednisolone-loaded nanoparticles fabricated by electrohydrodynamic atomization technique, Chem. Eng. Sci. 109 (2016) 816-823.

DOI: 10.1016/j.cherd.2016.03.004

Google Scholar

[12] K. Huanbutta, K. Terada, P. sriamornsak, J. nunthanid, Simultaneous x-ray diffraction-differential scanning calorimetry and physicochemical characterizations of spray dried drugs and chitosan Microspheres, Walailak J. Sci. & Tech. 13 (2016) 849-861.

Google Scholar

[13] K. Huanbutta, P. Sriamornsak, M. Luangtana-Anan, S. Limmatvapirat, S. Puttipipatkhachorn, L.Y. Lim, K. Terada, J. Nunthanid, Application of multiple stepwise spinning disk processing for the synthesis of poly(methyl acrylates) coated chitosan-diclofenac sodium nanoparticles for colonic drug delivery, Eur J Pharm Sci. 50 (2013) 303-311.

DOI: 10.1016/j.ejps.2013.07.010

Google Scholar

[14] V. Raicu, A. BÎran, D.F. Anghel, S. Saito, Electrical conductivity of aqueous polymer solutions, Colloid Polym. Sci. 275 (1997) 372-377.

DOI: 10.1007/s003960050094

Google Scholar

[15] R.I. Reda, M.M. Wen, A.H. El-Kamel, Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis, Int. J. Nanomedicine. 12 (2017) 2335-2351.

DOI: 10.2147/ijn.s131253

Google Scholar

[16] S. Rafiei, S. Maghsoodloo, B. Noroozi, V. Mottaghit Alab, A.K. Haghi, Mathematical modeling in electrospinning process of nanofibers: a detailed review, Cellul Chem Technol. 47 (2013) 323-338.

Google Scholar

[17] K. Huanbutta, T. Sangnim, W. Sittikijyothin, Development of tamarind seed gum as dry binder in formulation of diclofenac sodium tablets, Walailak J. Sci. & Tech. 13 (2015) 863-874.

Google Scholar

[18] A.R. Unnithan, N. Nasser, P.B. Tirupathi Pichiah, G. Gnanasekaran, R. Nirmala, Y.S. Cha, C.H. Jung, M. El-Newehy, H.Y. Kim, Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl, Carbohyd polym. 90 (2012) 1786-1793.

DOI: 10.1016/j.carbpol.2012.07.071

Google Scholar

[19] K.N. Kontogiannopoulos, I. Tsivintzelis, A.N. Assimopoulou, C. Panayiotou, V.P. Papageorgiou, Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications, Int. J. Pharm. 409 (2011) 216-228.

DOI: 10.1016/j.ijpharm.2011.02.004

Google Scholar