[1]
K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, A roadmap for graphene, Nature, Vol. 490, 192-200 (2012).
DOI: 10.1038/nature11458
Google Scholar
[2]
Andrea. C. Ferrari, Francesco Bonaccorso, Vladimir Fal'ko, Konstantin S. Novoselov, Stephan Roche, Peter Bøggild, Stefano Borini, Frank H. L. Koppens, Vincenzo Palermo, Nicola Pugno, José A. Garrido, Roman Sordan, Alberto Bianco, Laura Ballerini, Maurizio Prato, Elefterios Lidorikis, Jani Kivioja, Claudio Marinelli, Tapani Ryhänen, Alberto Morpurgo, Jonathan N. Coleman, Valeria Nicolosi, Luigi Colombo, Albert Fert, Mar Garcia-Hernandez, Adrian Bachtold, Grégory F. Schneider, Francisco Guinea, Cees Dekker, Matteo Barbone, Zhipei Sun, Costas Galiotis, Alexander N. Grigorenko, Gerasimos Konstantatos, Andras Kis, Mikhail Katsnelson, Lieven Vandersypen Annick Loiseau, Vittorio Morandi, Daniel Neumaier, Emanuele Treossi, Vittorio Pellegrini Marco Polini, Alessandro Tredicucci, Gareth M. Williams, Byung Hee Hong, Jong-Hyun Ahn, Jong Min Kim, Herbert Zirath, Bart J. van Wees, Herre van der Zant, Luigi Occhipinti, Andrea Di Matteo, Ian A. Kinloch, Thomas Seyller, Etienne Quesnel, Xinliang Feng, Ken Teo, Nalin Rupesinghe, Pertti Hakonen, Simon R. T. Neil, Quentin Tannock, Tomas Löfwander and Jari Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale, Vol.7 Issue 11, 4598-4810, (2015).
Google Scholar
[3]
Frank schwierz; Graphene Transistors, Nature Nanotechnology, Vol. 5, 487-496 (2010).
Google Scholar
[4]
G. Fiori, F. Bouaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, A. K. Banerjee and L. Colombo, Electronics based on Two-dimentional Materials; Nature Nanotech., Vol.10 Article Number 1038, 1-6, (2014).
DOI: 10.1038/nnano.2014.207
Google Scholar
[5]
H. Shu-Jen, A. V Garcia, S. Oida, J.A Jekin and W. Haenshs, Graphene Radio Frequency Receiver Integrated Circuit, Nature Commun., Vol. 5, 3086, 1-5, (2014).
Google Scholar
[6]
A. Benfdila and A. Lakhlef; Graphene Materials and Perspectives for Nanoelectronics; Journal of Nanoelectronics and Optoelectronics, Vol.13 no 10, 1437-1443, (2018).
DOI: 10.1166/jno.2018.1996
Google Scholar
[7]
J. Zheng, L.Wang, R. Quhe, Q. Liu, H. Li, D. Yu, W.N. Mei, J. Shi, Z. Gao and Jing Lu; Sub-10 nm Gate Length Graphene Operating at Terahertz Frequencies with Current Saturation; Scientific Reports Vol. 3, Article number: 1314, 1-6, (2013).
DOI: 10.1038/srep01314
Google Scholar
[8]
A. Benfante, MA. Giambra, R. Pernice, S. Stivala, E. Calandra and A. Parisi; Infrared radiation Detection, IEEE Photonics, 10-2, 1-7, (2018).
DOI: 10.1109/jphot.2018.2807923
Google Scholar
[9]
J. Yun, G. Lee and K. S. Kim; Electron Transport in Graphene Nanoribbon Field-E ffect Transistor under Bias and Gate Voltages: Isochemical Potential Approach; The Journal of Physical Chemistry Letters; Vol.7, 2478-2482, (2016).
DOI: 10.1021/acs.jpclett.6b00996
Google Scholar
[10]
C. Jeon, H.C. Shin, I. Song, M. Kim, J. H. Park, J. Nam, D. H. Oh, S. Woo, C. C. Hwang, C. Y. Park, and J. R. Ahn; Opening and reversible control of a wide energy gap in uniform monolayer graphene; Scientific Reports Vol. 3, Article number: 2725, 1-6 (2013).
DOI: 10.1038/srep02725
Google Scholar
[11]
A. Benfdila, M. Djouder and A. Lakhlef, Investigation on Metal-Graphene-Semiconductor Contacts; International Conference on the Formation of Surface and Interface, ICFSI-16; Germany; Jul.1-7 (2017).
Google Scholar
[12]
M. Alattas and U. Schwingenschlög, Band Gap Control in Bilayer Graphene by Co-Doping with B-N Pairs, Scientific Reports Vol. 8, Article number: 17689, 1-6, (2018).
DOI: 10.1038/s41598-018-35671-2
Google Scholar
[13]
M. D. Monirojjaman Monshi, Band Gap Engineering of 2D Nanomaterials and Graphene Based Heterostructure Devices, PhD Thesis, Florida International University, FIU Electronic Theses and Dissertations No:3354 (2017).
DOI: 10.25148/etd.fidc001977
Google Scholar
[14]
Y. Hu, P. Xie, M. De Corato, A. Ruini, S. Zhao, F. Meggendorfer, L.A Straasø, L. Rondin, P.Simon, J. Li, J. J. Finley, M.R. Hansen, J.S. Lauret, E. Molinari, X. Feng, J. V. Barth, C.-A Palma, D. Prezzi, K. Müllen, and A. Narita, Bandgap Engineering of Graphene Nanoribbons by Control over Structural Distortion, J. Am. Chem. Soc. Vol. 140-25, 7803–7809 (2018).
DOI: 10.1021/jacs.8b02209
Google Scholar
[15]
Y.C Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D. G. de Oteyza, F. R. Fisher, S. G. Louie and M. F. Crommie, Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions, Nature Nanotechnology, Vol. 10, 156-160 (2015).
DOI: 10.1038/nnano.2014.307
Google Scholar
[16]
G. D. Nguyen, H.-Z. Tsai, A. A. Omrani, T. Marangoni, M. Wu, D. J. Rizzo, G. F. Rodgers, R. R. Cloke, R. A. Durr, Y. Sakai, F. Liou, A. S. Aikawa, J. R. Chelikowsky, S. G. Louie, F. R. Fischer & M. F. Crommie, Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor,, Nature Nanotechnology 12, 1077-1082, (2017).
DOI: 10.1038/nnano.2017.155
Google Scholar
[17]
D. J. Rizzo, G. Veber, J. Jiang, R. McCurdy, T. Cao, C. Bronner, T. Chen, S. G. Louie, F. R. Fisher and M. F. Crommie; Inducing metallicity in graphene nanoribbons via zero-mode superlattices Science; Vol. 369, Issue 6511, 1597-1603; (2020).
DOI: 10.1126/science.aay3588
Google Scholar
[18]
K. Ba, W. Jiang J. Cheng, J. Bao, N. Xuan, Y. Sun, B. Liu, A. Xie, S. W and Z. Sun; Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride; Scientific Reports Vol. 7, Article number: 45584, 1-8 (2017).
DOI: 10.1038/srep45584
Google Scholar
[19]
T. Kawasaki, T. Ichimura, H. Kishimoto, A. S. Akbar, T. Ogawa and C. Oshima; Double Atomic Layers of Graphene /Monolayer h-BN ON Ni(111) Studied by Scanning Tunneling Microscopy and Scanning Tunneling Spectroscopy; Surface Review and Letters ; Vol. 09, No.03n04, 1459-1464; (2002).
DOI: 10.1142/s0218625x02003883
Google Scholar
[20]
Z. Chen, A. Narita and K. Mullen; Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices; Advanced Materials Wiley-VCH; Vol. 32, 2001893, 1-26, (2020).
DOI: 10.1002/adma.202001893
Google Scholar
[21]
Z. Chen, W. Zhang, C. A Palma, A L Rizzini, B. Liu, A. Abbas N. Richter, L. Martini, X. Y. Wang, N. Cavani, H. LU, N. Mishra, C. Coletti, R. Berger, F. Klappenberger, M ? Klaui, A. Candini, M. Affronte, C. Zhou, V. D. Renzi, U. del Pinnin, J. V. Barth, H. J. Rader, A. Narita, X. Feng and K. Mullen; Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration; J. Am. Chem. Soc.; Vol. 138-47, 15488–15496; (2016).
DOI: 10.1021/jacs.6b10374
Google Scholar
[22]
K. Ullah and W.C. Oh; Fabrication of large size graphene and Ti- MWCNTs/ large size graphene composites: their photocatalytic properties and potential application; Scientific Reports; Vol. 5Article Number 14242, 1-11, (2015).
DOI: 10.1038/srep14242
Google Scholar
[23]
F. Xia, D. B. Farmer, Y.M. Lin, and P. Avouris; Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature; ACS Nano Lett. Vol. 10, 715-718, (2010).
DOI: 10.1021/nl9039636
Google Scholar
[24]
J. P. Llinas, A. Fairbrother, G. B. Barin, W. Shi, K. Lee, S. Wu, B. Y. Choi, R. Braganza, J. Lear, N. Kau, W. Choi, C. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, K. Müllen, F. Fischer, A. Zettl, P. Ruffieux, E. Yablonovitch, M. Crommie, R. Fasel and J. Bokor, Short-channel field-effect transistors with 9-atomand 13-atom wide graphene nanoribbons, Nature Communications, Vol. 8:633, 1-6 (2017).
DOI: 10.1038/s41467-017-00734-x
Google Scholar
[25]
M. S. Jang, H. Kim, Y. Woo Son, H. A. Atwater, and W. A. Goddard III; Graphene Field Effect Transistor without an Energy Gap; PNAS Vol. 110 No.22, 8786–8789, (2013).
DOI: 10.1073/pnas.1305416110
Google Scholar
[26]
G. Li, K.Y. Yoon, X. Zhong, J. Wang, R. Zhang, J. R. Guest, J. Wen, X. Y. Zhu and G. Dong; A modular synthetic approach for band-gap engineering of armchair graphene ; Nature Comm., Vol. 9 Article Number 1687, 1-9, (2018).
DOI: 10.1038/s41467-018-03747-2
Google Scholar
[27]
Y. Wu, Y. M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu and P. Avouris; High-frequency, scaled graphene transistors on diamond-like carbon; Nature Letter; Vol. 472; 74-78; (2011).
DOI: 10.1038/nature09979
Google Scholar
[28]
A. Paussa, G. Fiori, P. Palestri, M. Geromel, D. Esseni, G. Iannaccone, and L. Selmi; Simulation of the Performance of Graphene FETs with a Semiclassical Model, Including Band-to-Band Tunneling, IEEE-TED 61, 1567-1574, (2014).
DOI: 10.1109/ted.2014.2307914
Google Scholar
[29]
J. Yun, G. Lee, and K. S. Kim; Electron Transport in Graphene Nanoribbon Field-Effect Transistor under Bias and Gate Voltages: Isochemical Potential Approach, J. Phys. Chem. Lett. Vol. 7, 2478-2482 (2016).
DOI: 10.1021/acs.jpclett.6b00996
Google Scholar
[30]
M. Assad, M. Bonmann, X. Yang, A. Vorobiev, K. Jeppson, L.Banszerus, M. Otto, C. Stampfer, D. Neumaier and J. Stake; The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties; Journal of the IEEE Electron Device Society; Vol. Vol. 8; 457-464, (2020).
DOI: 10.1109/jeds.2020.2988630
Google Scholar
[31]
C. Yu, Z. Z. He, X. B. Song, Q. B. Liu, T. T. Han, S. B. Dun, J. J. Wang, C. J. Zhou, J. C. Guo, Y. J. Lv, Z. H. Feng and S. J. Cai; Improvement of the Frequency Characteristics of Graphene Field-Effect Transistors on SiC Substrate; IEEE Electron Device Letters; Vol. 38 No. 9; 1339-1343 (2017).
DOI: 10.1109/led.2017.2734938
Google Scholar
[32]
D. L. Tiwari and K. Sivasankaran; Impact of Substrate on Performance of Band Gap engineered Graphene Field Effect Transistor; Superlattices and Microstructues; Vol. 113; 244-254, (2018).
DOI: 10.1016/j.spmi.2017.11.004
Google Scholar
[33]
L. Liao and X. Duan; Graphene for Radio Frequency Electronics; Elsevier Materials Today Vol. 15 No. 7-8; 329-338; (2012).
Google Scholar
[34]
Y. Wu, X. Zou, M. Sun, Z. Cao, X. Wang, S. Huo, Y. Yang, X. Yu, Y. Kong, G. Yu, L. Liao and T. Chen; 200 GHz Maximum Oscillation Frequency in CVD Graphene Radio Frequency Transistors; ACS Appl. Mater. Interfaces, Vol. 8 No 39, 25645–25649 (2016).
DOI: 10.1021/acsami.6b05791
Google Scholar
[35]
P.H. Jacobse, A. Kimouche, T. Gebraad, M.M. Ervasti, J.M. Thijssen, P. Liljeroth and I. Swart; Electronic Components Embedded in a Single Graphene Nanoribbon; Nature Communications; Vol.8:119; 1-7, (2017).
DOI: 10.1038/s41467-017-00195-2
Google Scholar