[1]
S.J. Klaine, P.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, J.R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects, Environmental Toxicology and Chemistry: An International Journal, 27 (2008) 1825-1851.
DOI: 10.1897/08-090.1
Google Scholar
[2]
A.M. Abu-Dief, S.K. Hamdan, Functionalization of magnetic nano particles: synthesis, characterization and their application in water purification, American Journal of Nanosciences, 2 (2016) 26-40.
Google Scholar
[3]
E. Ibrahim, A.M. Abu-Dief, A. Elshafaie, A. Ahmed, Electrical, thermoelectrical and magnetic properties of approximately 20-nm Ni-Co-O nanoparticles and investigation of their conduction phenomena, Materials Chemistry and Physics, 192 (2017) 41-47.
DOI: 10.1016/j.matchemphys.2017.01.054
Google Scholar
[4]
E. Ibrahim, L.H. Abdel-Rahman, A.M. Abu-Dief, A. Elshafaie, S.K. Hamdan, A. Ahmed, The synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic Properties, Materials Research Bulletin, 107 (2018) 492-497.
DOI: 10.1016/j.materresbull.2018.08.020
Google Scholar
[5]
A.M. Abu-Dief, Development of Metal Oxide Nanoparticles as Semiconductors, Journal of Nanotechnology and Nanomaterials, 1 (2020).
Google Scholar
[6]
P. Wang, E. Lombi, F.-J. Zhao, P.M. Kopittke, Nanotechnology: a new opportunity in plant sciences, Trends in plant science, 21 (2016) 699-712.
DOI: 10.1016/j.tplants.2016.04.005
Google Scholar
[7]
P. Cervantes-Avilés, G. Cuevas-Rodríguez, Changes in nutrient removal and flocs characteristics generated by presence of ZnO nanoparticles in activated sludge process, Chemosphere, 182 (2017) 672-680.
DOI: 10.1016/j.chemosphere.2017.05.074
Google Scholar
[8]
J. Hou, Y. Wu, X. Li, B. Wei, S. Li, X. Wang, Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms, Chemosphere, 193 (2018) 852-860.
DOI: 10.1016/j.chemosphere.2017.11.077
Google Scholar
[9]
M. Faizan, A. Faraz, M. Yusuf, S. Khan, S. Hayat, Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants, Photosynthetica, 56 (2018) 678-686.
DOI: 10.1007/s11099-017-0717-0
Google Scholar
[10]
G.D. Savi, K.C. Piacentini, S.R. de Souza, M.E. Costa, C.M. Santos, V.M. Scussel, Efficacy of zinc compounds in controlling Fusarium head blight and deoxynivalenol formation in wheat (Triticum aestivum L.), International journal of food microbiology, 205 (2015) 98-104.
DOI: 10.1016/j.ijfoodmicro.2015.04.001
Google Scholar
[11]
M. López-Moreno, G. De la Rosa, J. Hernández-Viezcas, Á.; Castillo-Michel, H.; Botez, CE; Peralta-Videa, JR; Gardea-Torresdey, JL Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants, Environ. Sci. Technol, 44 (2010) 7315-7320.
DOI: 10.1021/es903891g
Google Scholar
[12]
A.A. Keller, S. McFerran, A. Lazareva, S. Suh, Global life cycle releases of engineered nanomaterials, Journal of nanoparticle research, 15 (2013) 1692.
DOI: 10.1007/s11051-013-1692-4
Google Scholar
[13]
W. Du, Y. Sun, R. Ji, J. Zhu, J. Wu, H. Guo, TiO 2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil, Journal of Environmental Monitoring, 13 (2011) 822-828.
DOI: 10.1039/c0em00611d
Google Scholar
[14]
X. He, W.G. Aker, P.P. Fu, H.-M. Hwang, Toxicity of engineered metal oxide nanomaterials mediated by nano–bio–eco–interactions: a review and perspective, Environmental Science: Nano, 2 (2015) 564-582.
DOI: 10.1039/c5en00094g
Google Scholar
[15]
M. Naderi, A. Abedi, Application of nanotechnology in agriculture and refinement of environmental pollutants, J Nanotechnol, 11 (2012) 18-26.
Google Scholar
[16]
P. Mahajan, S. Dhoke, A. Khanna, Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method, Journal of Nanotechnology, 2011 (2011).
DOI: 10.1155/2011/696535
Google Scholar
[17]
G. Srivastava, C.K. Das, A. Das, S.K. Singh, M. Roy, H. Kim, N. Sethy, A. Kumar, R.K. Sharma, S.K. Singh, Seed treatment with iron pyrite (FeS 2) nanoparticles increases the production of spinach, RSC Advances, 4 (2014) 58495-58504.
DOI: 10.1039/c4ra06861k
Google Scholar
[18]
T. Zhang, H. Sun, Z. Lv, L. Cui, H. Mao, P.M. Kopittke, Using synchrotron-based approaches to examine the foliar application of ZnSO4 and ZnO nanoparticles for field-grown winter wheat, Journal of agricultural and food chemistry, 66 (2017) 2572-2579.
DOI: 10.1021/acs.jafc.7b04153
Google Scholar
[19]
S. Rawat, V.L. Pullagurala, M. Hernandez-Molina, Y. Sun, G. Niu, J.A. Hernandez-Viezcas, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Impacts of copper oxide nanoparticles on bell pepper (Capsicum annum L.) plants: a full life cycle study, Environmental Science: Nano, 5 (2018) 83-95.
DOI: 10.1039/c7en00697g
Google Scholar
[20]
J.A. Hernandez-Viezcas, H. Castillo-Michel, J.C. Andrews, M. Cotte, C. Rico, J.R. Peralta-Videa, Y. Ge, J.H. Priester, P.A. Holden, J.L. Gardea-Torresdey, In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max), ACS nano, 7 (2013) 1415-1423.
DOI: 10.1021/nn305196q
Google Scholar
[21]
Z. Wang, X. Xie, J. Zhao, X. Liu, W. Feng, J.C. White, B. Xing, Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.), Environmental science & technology, 46 (2012) 4434-4441.
DOI: 10.1021/es204212z
Google Scholar
[22]
M. Rui, C. Ma, X. Tang, J. Yang, F. Jiang, Y. Pan, Z. Xiang, Y. Hao, Y. Rui, W. Cao, Phytotoxicity of silver nanoparticles to peanut (Arachis hypogaea L.): physiological responses and food safety, ACS Sustainable Chemistry & Engineering, 5 (2017) 6557-6567.
DOI: 10.1021/acssuschemeng.7b00736
Google Scholar
[23]
D. Lin, B. Xing, Root uptake and phytotoxicity of ZnO nanoparticles, Environmental science & technology, 42 (2008) 5580-5585.
DOI: 10.1021/es800422x
Google Scholar
[24]
P. Wang, N.W. Menzies, E. Lombi, B.A. McKenna, B. Johannessen, C.J. Glover, P. Kappen, P.M. Kopittke, Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata), Environmental science & technology, 47 (2013) 13822-13830.
DOI: 10.1021/es403466p
Google Scholar
[25]
A. Singh, N. Singh, S. Afzal, T. Singh, I. Hussain, Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants, Journal of materials science, 53 (2018) 185-201.
DOI: 10.1007/s10853-017-1544-1
Google Scholar
[26]
A. Rehman, M. Farooq, L. Ozturk, M. Asif, K.H. Siddique, Zinc nutrition in wheat-based cropping systems, Plant and Soil, 422 (2018) 283-315.
DOI: 10.1007/s11104-017-3507-3
Google Scholar
[27]
P. Taunk, R. Das, D. Bisen, R.K. Tamrakar, Structural characterization and photoluminescence properties of zinc oxide nano particles synthesized by chemical route method, Journal of Radiation Research and Applied Sciences, 8 (2015) 433-438.
DOI: 10.1016/j.jrras.2015.03.006
Google Scholar
[28]
N. Younes, H.S. Hassan, M.F. Elkady, A. Hamed, M.F. Dawood, Impact of synthesized metal oxide nanomaterials on seedlings production of three Solanaceae crops, Heliyon, 6 (2020) e03188.
DOI: 10.1016/j.heliyon.2020.e03188
Google Scholar
[29]
R.C. Choudhary, R. Kumaraswamy, S. Kumari, S. Sharma, A. Pal, R. Raliya, P. Biswas, V. Saharan, Zinc encapsulated chitosan nanoparticle to promote maize crop yield, International journal of biological macromolecules, 127 (2019) 126-135.
DOI: 10.1016/j.ijbiomac.2018.12.274
Google Scholar
[30]
J. Cyriac, K. Melethil, B. Thomas, M. Sreejit, T. Varghese, Synthesis of biogenic ZnO nanoparticles and its impact on seed germination and root growth of Oryza sativa L. and Vigna unguiculata L, Materials Today: Proceedings, (2020).
DOI: 10.1016/j.matpr.2020.01.107
Google Scholar
[31]
K. Girigoswami, M. Viswanathan, R. Murugesan, A. Girigoswami, Studies on polymer-coated zinc oxide nanoparticles: UV-blocking efficacy and in vivo toxicity, Materials Science and Engineering: C, 56 (2015) 501-510.
DOI: 10.1016/j.msec.2015.07.017
Google Scholar
[32]
W. Du, J. Yang, Q. Peng, X. Liang, H. Mao, Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification, Chemosphere, 227 (2019) 109-116.
DOI: 10.1016/j.chemosphere.2019.03.168
Google Scholar
[33]
R. Zhang, H. Zhang, C. Tu, X. Hu, L. Li, Y. Luo, P. Christie, Phytotoxicity of ZnO nanoparticles and the released Zn (II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination, Environmental Science and Pollution Research, 22 (2015) 11109-11117.
DOI: 10.1007/s11356-015-4325-x
Google Scholar
[34]
C.W. Lee, S. Mahendra, K. Zodrow, D. Li, Y.C. Tsai, J. Braam, P.J. Alvarez, Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana, Environmental Toxicology and Chemistry: An International Journal, 29 (2010) 669-675.
DOI: 10.1002/etc.58
Google Scholar
[35]
D. Lin, B. Xing, Phytotoxicity of nanoparticles: inhibition of seed germination and root growth, Environmental pollution, 150 (2007) 243-250.
DOI: 10.1016/j.envpol.2007.01.016
Google Scholar
[36]
S. Laware, S. Raskar, Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion, International Journal of Current Microbiology Science, 3 (2014) 874-881.
Google Scholar
[37]
M. Rizwan, S. Ali, B. Ali, M. Adrees, M. Arshad, A. Hussain, M.Z. ur Rehman, A.A. Waris, Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat, Chemosphere, 214 (2019) 269-277.
DOI: 10.1016/j.chemosphere.2018.09.120
Google Scholar
[38]
C. García-Gómez, M. Babin, A. Obrador, J. Álvarez, M. Fernández, Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl 2 on plants and microorganisms in a natural soil, Environmental Science and Pollution Research, 22 (2015) 16803-16813.
DOI: 10.1007/s11356-015-4867-y
Google Scholar
[39]
W.D. Teale, I.A. Paponov, K. Palme, Auxin in action: signalling, transport and the control of plant growth and development, Nature Reviews Molecular Cell Biology, 7 (2006) 847-859.
DOI: 10.1038/nrm2020
Google Scholar
[40]
A.C. Pandey, S. S. Sanjay, R. S. Yadav, Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum, Journal of Experimental nanoscience, 5 (2010) 488-497.
DOI: 10.1080/17458081003649648
Google Scholar
[41]
L. Zhao, Y. Sun, J.A. Hernandez-Viezcas, A.D. Servin, J. Hong, G. Niu, J.R. Peralta-Videa, M. Duarte-Gardea, J.L. Gardea-Torresdey, Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study, Journal of agricultural and food chemistry, 61 (2013) 11945-11951.
DOI: 10.1021/jf404328e
Google Scholar
[42]
N. Singh, N. Amist, K. Yadav, D. Singh, J. Pandey, S. Singh, Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops, Journal of Nanoengineering and Nanomanufacturing, 3 (2013) 353-364.
DOI: 10.1166/jnan.2013.1156
Google Scholar
[43]
T. Prasad, P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K.R. Reddy, T. Sreeprasad, P. Sajanlal, T. Pradeep, Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut, Journal of plant nutrition, 35 (2012) 905-927.
DOI: 10.1080/01904167.2012.663443
Google Scholar
[44]
S. Rao, G. Shekhawat, Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea, Journal of Environmental Chemical Engineering, 2 (2014) 105-114.
DOI: 10.1016/j.jece.2013.11.029
Google Scholar