[1]
M.D. Kannan, R. Balasundaraprabhu, S. Jayakumar, P. Ramanathaswamy, Preparation and study of structural and optical properties of CSVT deposited CuInSe2 thin films, Sol. Energy Mater. Sol. Cells, 81 (2004) 379-395.
DOI: 10.1016/j.solmat.2003.11.014
Google Scholar
[2]
R. Scheer, H.W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices, Wiley-VCH, (2011).
DOI: 10.1002/9783527633708
Google Scholar
[3]
K. Jain, R.K. Sharma, S. Kohli, K.N. Sood, A.C. Rastogi, Electrochemical deposition and characterization of Cadmium Indium Telluride thin films for photovoltaic application, Curr. Appl. Phys., 3 (2003) 251-256.
DOI: 10.1016/s1567-1739(02)00211-0
Google Scholar
[4]
V.M. Garcia, P.K. Nair, M.T.S. Nair, Copper selenide thin by chemical bath deposition, Journal of Crystal Growth, 203 (1999) 113-124.
DOI: 10.1016/s0022-0248(99)00040-8
Google Scholar
[5]
F.J. Fan, L. Wu and S.H. Yu, Energetic I–III–VI2 and I2–II–IV–VI4 Nanocrystals: Synthesis, Photovoltaic and Thermoelectric Applications Energy Environ. Sci., 7(1), (2014) 190–208.
DOI: 10.1039/c3ee41437j
Google Scholar
[6]
D. Tang, Q. Wang, F. Liu, L. Zhao, Z. Han, K. Sun, Y. Lai, J. Li, and Y. Liu, An alternative route towards low-cost Cu2ZnSnS4 thin film solar cells,, Surf. Coat. Technol., 232, (2013) 53–59.
DOI: 10.1016/j.surfcoat.2013.04.052
Google Scholar
[7]
M. Mansoorianfar, R. Rahighi, A. Hojjati-Najafabadi, C. Mei, D. Li. Amorphous/crystalline phase control of nanotubular TiO2 membranes via pressure-engineered anodizing., Materials & Design. 198 (2021) 109314. (1-11).
DOI: 10.1016/j.matdes.2020.109314
Google Scholar
[8]
P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, M. Powalla, New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 19 (7) (2011) 894–897.
DOI: 10.1002/pip.1078
Google Scholar
[9]
M. Ganchev, L. Kaupmees, J. Iliyna, J. Raudoja, O. Volobujeva, H. Dikov, T. Varema, Formation of Cu2ZnSnSe4 thin films by selenization of electrodeposited stacked binary alloy layers. Energy Procedia, 2(1) (2010) 65–70.
DOI: 10.1016/j.egypro.2010.07.012
Google Scholar
[10]
S.K. Dwivedi, D.C. Tiwari, S.K. Tripathi, M.B. Zaman, P. Dipak, M. Imamuddin, R. Poolla, N.E. Prasad, P3HT:PCBM and Cu2SnSe3 nano-ink based hybrid solar cells. Solar Energy, vol.177 (2019) 382–386.
DOI: 10.1016/j.solener.2018.11.032
Google Scholar
[11]
A. Walsh, S. Chen, S.H. Wei, X.G. Gong, Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4. Advanced Energy Materials, 2(4) (2012) 400–409.
DOI: 10.1002/aenm.201100630
Google Scholar
[12]
A.N. Banerjee, V.R.M. Reddy, S.W. Joo, H.R. Barai, C. Park, Status review on the Cu2SnSe3 (CTSe) thin films for photovoltaic applications, Solar Energy 208, (2020) 1001-1030.
DOI: 10.1016/j.solener.2020.07.095
Google Scholar
[13]
Md. Fakhrul Islam, N. Md Yatim, P. Chelvanathan, M. Tanvirul Ferdaous, M.A. Hashim Ismail, A. Kumar Modak, Prof. Nowshad Amin, A Critical Review of Cu2SnS3 (CTS) Thin Films Solar Cells MJoSHT, 3 (2019) 110-118.
DOI: 10.33102/mjosht.v7i.117
Google Scholar
[14]
Md. Fakhrul Islam, N.Md. Yatim, M.A. Hashimi, A Review of CZTS Thin Film Solar Cell Technology, Journal of Advanced Research in Fluid Mechanics and Thermal Science 81 (2021) 73-87.
DOI: 10.37934/arfmts.81.1.7387
Google Scholar
[15]
C. Wu, Z. Hu, C. Wang, H. Sheng, J. Yang, Y. Xie, Hexagonal Cu2SnS3 with metallic character: Another category of conducting sulfides. Applied Physics Letters, 91(14) (2007) 143-104.
DOI: 10.1063/1.2790491
Google Scholar
[16]
T.A. Kuku, O.A. Fakolujo, Photovoltaic characteristics of thin films of Cu2SnS3. Solar Energy Materials, 16(1-3) (1987) 199–204.
DOI: 10.1016/0165-1633(87)90019-0
Google Scholar
[17]
G. Marcano, C. Rincón, G. Marı́n, R. Tovar, G. Delgado, Crystal growth and characterization of the cubic semiconductor Cu2SnSe4. Journal of Applied Physics, 92(4) (2002) 1811–1815.
DOI: 10.1063/1.1492018
Google Scholar
[18]
K.M. Kim, H. Tampo, H. Shibata, S. Niki, Growth and characterization of coevaporated Cu2SnSe3 thin films for photovoltaic applications. Thin Solid Films, 536 (2013) 111–114.
DOI: 10.1016/j.tsf.2013.03.119
Google Scholar
[19]
S.K. Dwivedi, D.C. Tiwari, S.K. Tripathi, P.K. Dwivedi, P. Dipak, T. Chandel, N.E. Prasad, Fabrication and properties of P3HT: PCBM/Cu2SnSe3 (CTSe) nanocrystals based inverted hybrid solar cells. Solar Energy, 187 (2019) 167–174.
DOI: 10.1016/j.solener.2019.05.012
Google Scholar
[20]
M. Kamalanathan, H. Shamima, R. Gopalakrishnan, K. Vishista, Influence of solvents on solvothermal synthesis of Cu2SnS3 nanoparticles with enhanced optical, photoconductive and electrical properties. Materials Technology, 33(2) (2017) 72–78.
DOI: 10.1080/10667857.2017.1376788
Google Scholar
[21]
M. Chaouche, N. Benslim, K. Hamdani, M. Benabdeslem, L. Bechiri, M. Boujnah, M. El Yadari, Experimental and DFT Study of Structural and Optical Properties of Kesterite-Type Cu2ZnSnS4 Compound for Solar Cell Applications. JOM, 69(12) (2017) 2492–2496.
DOI: 10.1007/s11837-017-2556-7
Google Scholar
[22]
K. Hamdani, M. Chaouche, M. Benabdeslem, L. Bechiri, N. Benslim, A. Amara, X. Portier, M. Bououdina, A. Otmani, P. Marie, Synthesis and characterization of thermally evaporated Cu2SnSe3 ternary semiconductor. Optical Materials, 37 (2014) 338–342.
DOI: 10.1016/j.optmat.2014.06.022
Google Scholar
[23]
L. Bechiri, L. Mahdjoubi, R. Madelon, G. Nouet, Electrical and photoluminescence properties of evaporated CuIn1−xGaxTe2 thin films. Solar Energy Materials and Solar Cells, 77(1) (2003) 41–49.
DOI: 10.1016/s0927-0248(02)00243-x
Google Scholar
[24]
B.B. Sharma, R. Ayyar, H. Singh, Stability of the Tetrahedral Phase in the AI2BIVCVI3 Group of Compounds. PhysicaStatusSolidi (a), 40(2) (1977) 691-696.
DOI: 10.1002/pssa.2210400237
Google Scholar
[25]
K. Venkateswarlu, M. Sandhyarani, T.A. Nellaippan, N. Rameshbabu, Estimation of crystallite size, lattice strain and dislocation density of nanocrystalline carbonate substituted hydroxyapatite by X-ray peak variance analysis, Procedia Mater. Sci. (2014) 212-221.
DOI: 10.1016/j.mspro.2014.07.260
Google Scholar
[26]
C. Nefzi, M. Souli, Y. Cuminal, N. Kamoun-Turki, Superlattices Microstruct, vol. 124 (2018) 17-29.
DOI: 10.1016/j.spmi.2018.09.033
Google Scholar
[27]
G.K. Williamson, R. E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philosophical Magazine, 1(1) (1956) 34-46.
DOI: 10.1080/14786435608238074
Google Scholar
[28]
H. Oueslati, M. Ben Rabeh, M. Kanzari, Synthesis and Characterization of Next Generation Cu2ZnxFe1−xSnS4 (x = 0, 0.25, 0.5, 0.75 and 1) Compounds. Journal of Electronic Materials, 49 (2019) 627-636.
DOI: 10.1007/s11664-019-07766-7
Google Scholar
[29]
M. Dhanam, P.K. Manoj, R. R. Prabhu, High-temperature conductivity in chemical bath deposited copper selenide thin films. Journal of Crystal Growth, 280 (2005) 425-435.
DOI: 10.1016/j.jcrysgro.2005.01.111
Google Scholar
[30]
T. Jannane, M. Manoua, A. Liba, N. Fazouan, A.E. Hichou, A. Almaggoussi, A. Outzourhit, M. Chaik, Sol-gel Aluminum-doped ZnO thin films: synthesis and characterization. J. Mater. Environ. Sci. 8 (1) (2017) 160-168.
DOI: 10.1016/j.spmi.2020.106689
Google Scholar
[31]
K.M. Kim, H. Tampo, H. Shibata, S. Niki, Growth and characterization of coevaporated Cu2SnSe3 thin films for photovoltaic applications. Thin Solid Films, 536 (2013) 111-114.
DOI: 10.1016/j.tsf.2013.03.119
Google Scholar
[32]
J.J. Wang, K. M. Ryan, Colloidal synthesis of Cu2SnSe3 nanocrystals with structure induced shape evolution. Cryst.Eng.Comm, 18(18) (2016) 3161-3169.
DOI: 10.1039/c6ce00251j
Google Scholar
[33]
A. Jebali, N. Khemiri, M. Kanzari, The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films. Journal of Alloys and Compounds, 673 (2016) 38-46.
DOI: 10.1016/j.jallcom.2016.02.159
Google Scholar
[34]
A.I. Ali, A.H. Ammar, A. Abdel Moez, Influence of substrate temperature on structural, optical properties and dielectric results of nano-ZnO thin films prepared by Radio Frequency technique. Super lattices and Microstructures, 65 (2014) 285-298.
DOI: 10.1016/j.spmi.2013.11.007
Google Scholar
[35]
R. Swanepoel, Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. Journal of Physics E: Scientific Instruments, 17(10) (1984) 896.
DOI: 10.1088/0022-3735/17/10/023
Google Scholar
[36]
N.M. Tashtoush, O. ALkasassbeh, Determining optical constants of selenium thin films using the envelope method. American Journal of Applied Sciences, 10(2) (2013) 164.
DOI: 10.3844/ajassp.2013.164.171
Google Scholar
[37]
P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, Effect of post deposition heat treatment on microstructure parameters, optical constants and composition of thermally evaporated CdTe thin films, Materials Science in Semiconductor Processing, 58 (2017) 51-60.
DOI: 10.1016/j.mssp.2016.11.028
Google Scholar
[38]
P. Uday Bhaskar, G. Suresh Babu, Y.B. Kishore Kumar, V. Sundara Raja, Investigations on co-evaporated Cu2SnSe3 and Cu2SnSe3–ZnSe thin films. Applied Surface Science, 257(20) (2011) 8529-8534.
DOI: 10.1016/j.apsusc.2011.05.008
Google Scholar
[39]
J. Wang, A. Singh, P. Liu, S. Singh, C. Coughlan, Y. Guo, K. M. Ryan, Colloidal Synthesis of Cu2SnSe3 Tetrapod Nanocrystals. Journal of the American Chemical Society, 135(21) (2013) 7835-7838.
DOI: 10.1021/ja403083p
Google Scholar
[40]
F.E. Guzman, R. Moreno, M. Hurtado, G. Gordillo, Synthesis and characterization of Cu2SnSe3 thin films compound used in the fabrication of solar cells, Revista de Fısica, 47 (2013) 87-97.
Google Scholar
[41]
L. Zhu, Y.H. Qiang, Y.L. Zhao, X.Q. Gu, D.M. Song, C.B. Song, Facile Synthesis of Cu2SnSe3 as Counter Electrodes for Dye-Sensitized Solar Cells, Acta Physico-Chimica Sinica., 11 (2013) 2339-2344.
Google Scholar
[42]
P.Y. Lee, S.C. Shei, E.H. Hsu, S.J. Chang, A novel synthesis of Cu2SnSe3 nanoink prepared via elemental sources and isophorondiamine chelation Mater. Lett., 102 (2013), 120-122.
DOI: 10.1016/j.matlet.2013.03.129
Google Scholar
[43]
G. Hema Chandra, O. Lakshmana Kumar, R. Prasada Rao, S. Uthanna, Influence of substrate and selenization temperatures on the growth of Cu2SnSe3 films, J Mater Sci., 46 (2011) 6952–6959.
DOI: 10.1007/s10853-011-5661-y
Google Scholar
[44]
P. Prathiba Jeya Helan, K. Mohanraj, G. Sivakumar, Studies on structural, optical and electrical properties of electron beam evaporated Cu2SnSe3 thin films, Materials Science-Poland., 34(4) (2016) 703-707.
DOI: 10.1515/msp-2016-0106
Google Scholar