Study of Copper Tin Selenide Nanoparticles of Milled Powder and Thin Films

Article Preview

Abstract:

Nanoparticles Cu2SnSe3 alloys were synthesized by mechanical alloying from mixtures of pure crystalline Cu, Sn and Se powders using a low cost planetary ball milling process optimizing the milling duration and the rotational speed. The properties of Cu2SnSe3 (CTSe) thin films deposited by thermal evaporation from this powder on glass substrate at Ts = 400°C were investigated. Powders and films were analyzed by X-ray diffraction (XRD), scanning electron microscopy(SEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), to determine their microstructure, morphology, chemical compositions and root-mean-square (RMS) roughness. XRD analysis revealed that all samples crystallize in polycrystalline nature with cubic structure and lattice parameter a = 5.68 Å. The optical measurements were carried out in the [500-2500nm] wavelength range and were determined from spectral transmission data. Optical measurements showed that the deposited layers had a relatively high absorption coefficient of 104 cm-1 and the direct energy band gap was found to be around Eg =1.29eV. The suitable p-type conductivity of CTSe thin films was confirmed by hot probe method. Other electrical parameters (carrier concentration np = 10.04x1018 cm-3, electrical resistivity ρ = 30.49x10-2 Ω cm and mobility μH = 94.33 cm2/V s) were measured at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-79

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.D. Kannan, R. Balasundaraprabhu, S. Jayakumar, P. Ramanathaswamy, Preparation and study of structural and optical properties of CSVT deposited CuInSe2 thin films, Sol. Energy Mater. Sol. Cells, 81 (2004) 379-395.

DOI: 10.1016/j.solmat.2003.11.014

Google Scholar

[2] R. Scheer, H.W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices, Wiley-VCH, (2011).

DOI: 10.1002/9783527633708

Google Scholar

[3] K. Jain, R.K. Sharma, S. Kohli, K.N. Sood, A.C. Rastogi, Electrochemical deposition and characterization of Cadmium Indium Telluride thin films for photovoltaic application, Curr. Appl. Phys., 3 (2003) 251-256.

DOI: 10.1016/s1567-1739(02)00211-0

Google Scholar

[4] V.M. Garcia, P.K. Nair, M.T.S. Nair, Copper selenide thin by chemical bath deposition, Journal of Crystal Growth, 203 (1999) 113-124.

DOI: 10.1016/s0022-0248(99)00040-8

Google Scholar

[5] F.J. Fan, L. Wu and S.H. Yu, Energetic I–III–VI2 and I2–II–IV–VI4 Nanocrystals: Synthesis, Photovoltaic and Thermoelectric Applications Energy Environ. Sci., 7(1), (2014) 190–208.

DOI: 10.1039/c3ee41437j

Google Scholar

[6] D. Tang, Q. Wang, F. Liu, L. Zhao, Z. Han, K. Sun, Y. Lai, J. Li, and Y. Liu, An alternative route towards low-cost Cu2ZnSnS4 thin film solar cells,, Surf. Coat. Technol., 232, (2013) 53–59.

DOI: 10.1016/j.surfcoat.2013.04.052

Google Scholar

[7] M. Mansoorianfar, R. Rahighi, A. Hojjati-Najafabadi, C. Mei, D. Li. Amorphous/crystalline phase control of nanotubular TiO2 membranes via pressure-engineered anodizing., Materials & Design. 198 (2021) 109314. (1-11).

DOI: 10.1016/j.matdes.2020.109314

Google Scholar

[8] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, M. Powalla, New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 19 (7) (2011) 894–897.

DOI: 10.1002/pip.1078

Google Scholar

[9] M. Ganchev, L. Kaupmees, J. Iliyna, J. Raudoja, O. Volobujeva, H. Dikov, T. Varema, Formation of Cu2ZnSnSe4 thin films by selenization of electrodeposited stacked binary alloy layers. Energy Procedia, 2(1) (2010) 65–70.

DOI: 10.1016/j.egypro.2010.07.012

Google Scholar

[10] S.K. Dwivedi, D.C. Tiwari, S.K. Tripathi, M.B. Zaman, P. Dipak, M. Imamuddin, R. Poolla, N.E. Prasad, P3HT:PCBM and Cu2SnSe3 nano-ink based hybrid solar cells. Solar Energy, vol.177 (2019) 382–386.

DOI: 10.1016/j.solener.2018.11.032

Google Scholar

[11] A. Walsh, S. Chen, S.H. Wei, X.G. Gong, Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4. Advanced Energy Materials, 2(4) (2012) 400–409.

DOI: 10.1002/aenm.201100630

Google Scholar

[12] A.N. Banerjee, V.R.M. Reddy, S.W. Joo, H.R. Barai, C. Park, Status review on the Cu2SnSe3 (CTSe) thin films for photovoltaic applications, Solar Energy 208, (2020) 1001-1030.

DOI: 10.1016/j.solener.2020.07.095

Google Scholar

[13] Md. Fakhrul Islam, N. Md Yatim, P. Chelvanathan, M. Tanvirul Ferdaous, M.A. Hashim Ismail, A. Kumar Modak, Prof. Nowshad Amin, A Critical Review of Cu2SnS3 (CTS) Thin Films Solar Cells MJoSHT, 3 (2019) 110-118.

DOI: 10.33102/mjosht.v7i.117

Google Scholar

[14] Md. Fakhrul Islam, N.Md. Yatim, M.A. Hashimi, A Review of CZTS Thin Film Solar Cell Technology, Journal of Advanced Research in Fluid Mechanics and Thermal Science 81 (2021) 73-87.

DOI: 10.37934/arfmts.81.1.7387

Google Scholar

[15] C. Wu, Z. Hu, C. Wang, H. Sheng, J. Yang, Y. Xie, Hexagonal Cu2SnS3 with metallic character: Another category of conducting sulfides. Applied Physics Letters, 91(14) (2007) 143-104.

DOI: 10.1063/1.2790491

Google Scholar

[16] T.A. Kuku, O.A. Fakolujo, Photovoltaic characteristics of thin films of Cu2SnS3. Solar Energy Materials, 16(1-3) (1987) 199–204.

DOI: 10.1016/0165-1633(87)90019-0

Google Scholar

[17] G. Marcano, C. Rincón, G. Marı́n, R. Tovar, G. Delgado, Crystal growth and characterization of the cubic semiconductor Cu2SnSe4. Journal of Applied Physics, 92(4) (2002) 1811–1815.

DOI: 10.1063/1.1492018

Google Scholar

[18] K.M. Kim, H. Tampo, H. Shibata, S. Niki, Growth and characterization of coevaporated Cu2SnSe3 thin films for photovoltaic applications. Thin Solid Films, 536 (2013) 111–114.

DOI: 10.1016/j.tsf.2013.03.119

Google Scholar

[19] S.K. Dwivedi, D.C. Tiwari, S.K. Tripathi, P.K. Dwivedi, P. Dipak, T. Chandel, N.E. Prasad, Fabrication and properties of P3HT: PCBM/Cu2SnSe3 (CTSe) nanocrystals based inverted hybrid solar cells. Solar Energy, 187 (2019) 167–174.

DOI: 10.1016/j.solener.2019.05.012

Google Scholar

[20] M. Kamalanathan, H. Shamima, R. Gopalakrishnan, K. Vishista, Influence of solvents on solvothermal synthesis of Cu2SnS3 nanoparticles with enhanced optical, photoconductive and electrical properties. Materials Technology, 33(2) (2017) 72–78.

DOI: 10.1080/10667857.2017.1376788

Google Scholar

[21] M. Chaouche, N. Benslim, K. Hamdani, M. Benabdeslem, L. Bechiri, M. Boujnah, M. El Yadari, Experimental and DFT Study of Structural and Optical Properties of Kesterite-Type Cu2ZnSnS4 Compound for Solar Cell Applications. JOM, 69(12) (2017) 2492–2496.

DOI: 10.1007/s11837-017-2556-7

Google Scholar

[22] K. Hamdani, M. Chaouche, M. Benabdeslem, L. Bechiri, N. Benslim, A. Amara, X. Portier, M. Bououdina, A. Otmani, P. Marie, Synthesis and characterization of thermally evaporated Cu2SnSe3 ternary semiconductor. Optical Materials, 37 (2014) 338–342.

DOI: 10.1016/j.optmat.2014.06.022

Google Scholar

[23] L. Bechiri, L. Mahdjoubi, R. Madelon, G. Nouet, Electrical and photoluminescence properties of evaporated CuIn1−xGaxTe2 thin films. Solar Energy Materials and Solar Cells, 77(1) (2003) 41–49.

DOI: 10.1016/s0927-0248(02)00243-x

Google Scholar

[24] B.B. Sharma, R. Ayyar, H. Singh, Stability of the Tetrahedral Phase in the AI2BIVCVI3 Group of Compounds. PhysicaStatusSolidi (a), 40(2) (1977) 691-696.

DOI: 10.1002/pssa.2210400237

Google Scholar

[25] K. Venkateswarlu, M. Sandhyarani, T.A. Nellaippan, N. Rameshbabu, Estimation of crystallite size, lattice strain and dislocation density of nanocrystalline carbonate substituted hydroxyapatite by X-ray peak variance analysis, Procedia Mater. Sci. (2014) 212-221.

DOI: 10.1016/j.mspro.2014.07.260

Google Scholar

[26] C. Nefzi, M. Souli, Y. Cuminal, N. Kamoun-Turki, Superlattices Microstruct, vol. 124 (2018) 17-29.

DOI: 10.1016/j.spmi.2018.09.033

Google Scholar

[27] G.K. Williamson, R. E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philosophical Magazine, 1(1) (1956) 34-46.

DOI: 10.1080/14786435608238074

Google Scholar

[28] H. Oueslati, M. Ben Rabeh, M. Kanzari, Synthesis and Characterization of Next Generation Cu2ZnxFe1−xSnS4 (x = 0, 0.25, 0.5, 0.75 and 1) Compounds. Journal of Electronic Materials, 49 (2019) 627-636.

DOI: 10.1007/s11664-019-07766-7

Google Scholar

[29] M. Dhanam, P.K. Manoj, R. R. Prabhu, High-temperature conductivity in chemical bath deposited copper selenide thin films. Journal of Crystal Growth, 280 (2005) 425-435.

DOI: 10.1016/j.jcrysgro.2005.01.111

Google Scholar

[30] T. Jannane, M. Manoua, A. Liba, N. Fazouan, A.E. Hichou, A. Almaggoussi, A. Outzourhit, M. Chaik, Sol-gel Aluminum-doped ZnO thin films: synthesis and characterization. J. Mater. Environ. Sci. 8 (1) (2017) 160-168.

DOI: 10.1016/j.spmi.2020.106689

Google Scholar

[31] K.M. Kim, H. Tampo, H. Shibata, S. Niki, Growth and characterization of coevaporated Cu2SnSe3 thin films for photovoltaic applications. Thin Solid Films, 536 (2013) 111-114.

DOI: 10.1016/j.tsf.2013.03.119

Google Scholar

[32] J.J. Wang, K. M. Ryan, Colloidal synthesis of Cu2SnSe3 nanocrystals with structure induced shape evolution. Cryst.Eng.Comm, 18(18) (2016) 3161-3169.

DOI: 10.1039/c6ce00251j

Google Scholar

[33] A. Jebali, N. Khemiri, M. Kanzari, The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films. Journal of Alloys and Compounds, 673 (2016) 38-46.

DOI: 10.1016/j.jallcom.2016.02.159

Google Scholar

[34] A.I. Ali, A.H. Ammar, A. Abdel Moez, Influence of substrate temperature on structural, optical properties and dielectric results of nano-ZnO thin films prepared by Radio Frequency technique. Super lattices and Microstructures, 65 (2014) 285-298.

DOI: 10.1016/j.spmi.2013.11.007

Google Scholar

[35] R. Swanepoel, Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. Journal of Physics E: Scientific Instruments, 17(10) (1984) 896.

DOI: 10.1088/0022-3735/17/10/023

Google Scholar

[36] N.M. Tashtoush, O. ALkasassbeh, Determining optical constants of selenium thin films using the envelope method. American Journal of Applied Sciences, 10(2) (2013) 164.

DOI: 10.3844/ajassp.2013.164.171

Google Scholar

[37] P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, Effect of post deposition heat treatment on microstructure parameters, optical constants and composition of thermally evaporated CdTe thin films, Materials Science in Semiconductor Processing, 58 (2017) 51-60.

DOI: 10.1016/j.mssp.2016.11.028

Google Scholar

[38] P. Uday Bhaskar, G. Suresh Babu, Y.B. Kishore Kumar, V. Sundara Raja, Investigations on co-evaporated Cu2SnSe3 and Cu2SnSe3–ZnSe thin films. Applied Surface Science, 257(20) (2011) 8529-8534.

DOI: 10.1016/j.apsusc.2011.05.008

Google Scholar

[39] J. Wang, A. Singh, P. Liu, S. Singh, C. Coughlan, Y. Guo, K. M. Ryan, Colloidal Synthesis of Cu2SnSe3 Tetrapod Nanocrystals. Journal of the American Chemical Society, 135(21) (2013) 7835-7838.

DOI: 10.1021/ja403083p

Google Scholar

[40] F.E. Guzman, R. Moreno, M. Hurtado, G. Gordillo, Synthesis and characterization of Cu2SnSe3 thin films compound used in the fabrication of solar cells, Revista de Fısica, 47 (2013) 87-97.

Google Scholar

[41] L. Zhu, Y.H. Qiang, Y.L. Zhao, X.Q. Gu, D.M. Song, C.B. Song, Facile Synthesis of Cu2SnSe3 as Counter Electrodes for Dye-Sensitized Solar Cells, Acta Physico-Chimica Sinica., 11 (2013) 2339-2344.

Google Scholar

[42] P.Y. Lee, S.C. Shei, E.H. Hsu, S.J. Chang, A novel synthesis of Cu2SnSe3 nanoink prepared via elemental sources and isophorondiamine chelation Mater. Lett., 102 (2013), 120-122.

DOI: 10.1016/j.matlet.2013.03.129

Google Scholar

[43] G. Hema Chandra, O. Lakshmana Kumar, R. Prasada Rao, S. Uthanna, Influence of substrate and selenization temperatures on the growth of Cu2SnSe3 films, J Mater Sci., 46 (2011) 6952–6959.

DOI: 10.1007/s10853-011-5661-y

Google Scholar

[44] P. Prathiba Jeya Helan, K. Mohanraj, G. Sivakumar, Studies on structural, optical and electrical properties of electron beam evaporated Cu2SnSe3 thin films, Materials Science-Poland., 34(4) (2016) 703-707.

DOI: 10.1515/msp-2016-0106

Google Scholar